丁香五月天婷婷久久婷婷色综合91|国产传媒自偷自拍|久久影院亚洲精品|国产欧美VA天堂国产美女自慰视屏|免费黄色av网站|婷婷丁香五月激情四射|日韩AV一区二区中文字幕在线观看|亚洲欧美日本性爱|日日噜噜噜夜夜噜噜噜|中文Av日韩一区二区

您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
此為臨時鏈接,僅用于文章預覽,將在時失效
智能駕駛 正文
發(fā)私信給張夢華
發(fā)送

1

重訪 2005 DARPA 挑戰(zhàn)賽斯坦福車隊成員:Stanley 奪冠背后那些不為人知的細節(jié) | GAIR硅谷智能駕駛峰會

本文作者: 張夢華 2017-12-12 20:56 專題:GAIR硅谷智能駕駛峰會
導語:1 月 16 日,雷鋒網將在硅谷舉辦 GAIR 硅谷智能駕駛峰會,2005年DAPRA挑戰(zhàn)賽冠軍斯坦福車隊成員Adrian Kaehler 將帶來主題演講。

重訪 2005 DARPA 挑戰(zhàn)賽斯坦福車隊成員:Stanley 奪冠背后那些不為人知的細節(jié) | GAIR硅谷智能駕駛峰會

雖然在高校和軍隊早有過數(shù)十億美元的研發(fā)投入,但在 DARPA 挑戰(zhàn)賽之前,自動駕駛還遠沒有走入公眾視野。當然,也沒有人否認,自 2005 年 DARPA 挑戰(zhàn)賽之后,這項正在定義汽車產業(yè)未來的關鍵技術,開始被越來越多的科技公司與車企提上日程。

而在自動駕駛快速發(fā)展的近十多年中, Adrian Kaehler 無疑是行業(yè)的重要見證者之一。

作為 2005 年 DARPA 挑戰(zhàn)賽斯坦福大學的核心成員之一,Adrian Kaehler 與團隊成員一舉擊敗卡耐基梅隆大學在內的眾多車隊,獲得了當年挑戰(zhàn)賽冠軍,而其隊友在日后也成為全球自動駕駛行業(yè)的重要弄潮者,比如后來創(chuàng)辦 Google X 的 Sebastian Thrun。

今年 10 月,Adrian 在硅谷接受了雷鋒網·新智駕的專訪,分享了 12 年前 DARPA 挑戰(zhàn)賽的經驗與見聞,包括其如何與英特爾的同事力排眾議,說服 Sebastian Thrun 采用計算機視覺方案,以及當年幫助斯坦福贏得冠軍的關鍵因素等。而關于自動駕駛的商業(yè)前景和未來發(fā)展,Adrian 也給出了諸多認識與見解。

可以親見大神的機會并不多,但眼下,雷鋒網已經爭取到一個。2018 年 1 月 16 日,雷鋒網將在美國硅谷舉辦 GAIR 硅谷智能駕駛峰會,我們特地邀請到了 2005 年 DAPRA 挑戰(zhàn)賽冠軍斯坦福車隊成員、無人駕駛行業(yè)從萌芽到飛速發(fā)展的親歷者 Adrian Kaehler 進行主題演講。屆時,Adrian Kaehler 也將與現(xiàn)場嘉賓分享其對無人駕駛十多年發(fā)展的更多深入思考。點擊:https://gair.leiphone.com/gair/gairsv2018,便可了解關于 GAIR 硅谷智能駕駛峰會的更多信息。

今年是 2017 年,距第二屆 DARPA 無人駕駛挑戰(zhàn)賽(2005)的籌辦,已過去了十多年。

看到現(xiàn)在遍地生花的無人駕駛行業(yè),為自動駕駛算法、激光雷達、高精地圖、芯片提供解決方案的初創(chuàng)公司紛紛涌現(xiàn),一條完整的產業(yè)鏈正在形成。而催生這一切的“原點”,使得自動駕駛由概念走向現(xiàn)實的那一刻——便是 2005 DARPA 挑戰(zhàn)賽上斯坦福 “Stanley” 賽車力壓卡內基梅隆的兩輛改裝悍馬,以第一名的成績完賽的那一瞬間。

為了更清晰地回顧這場里程碑意義的比賽,雷鋒網采訪了一位當事者—— 其作為斯坦福車隊成員親身經歷了這場比賽、參與了 “Stanley” 的改裝測試。他將以第一視角講述、反思這場自動駕駛世紀比賽。

重訪 2005 DARPA 挑戰(zhàn)賽斯坦福車隊成員:Stanley 奪冠背后那些不為人知的細節(jié) | GAIR硅谷智能駕駛峰會*Adrian Kaehler

這位便是本次采訪的對象 Adrian Kaehler,其經歷不可謂不豐富,以下是一部分:

  • 14 歲就讀于加州大學 Santa Cruz 分校;

  • 加入 2005 DARPA 挑戰(zhàn)賽斯坦福車隊,參與 “Stanley” 的計算機視覺模塊(CV)開發(fā);

  • 2006 年出版 《Learning OpenCV》;

  • 2013 年跳槽頗富爭議的 AR 初創(chuàng)公司 Magic Leap,任副總裁,2015 年離職,后互相起訴;

  • 2015 年創(chuàng)立非盈利組織 Silicon Valley Deep Learning Group,在硅谷組織向所有人免費開放的深度學習講座。

以下是采訪正文。

雷鋒網注:DARPA 自動駕駛挑戰(zhàn)賽共舉辦了三屆:2004 年的第一屆 Grand Challenge,2005 年的 第二屆 Grand Challenge,以及 2007 年的 Urban Challenge(城市挑戰(zhàn)賽)。下文中“第一屆”、“第二屆”字眼會頻繁出現(xiàn),分別指代 2004 年與 2005 年的挑戰(zhàn)賽。

雷鋒網:請介紹一下 2005 年 DARPA 挑戰(zhàn)賽舉辦的背景。

Adrian Kaehler:第一屆(2004 年)DARPA Grand Challenge 的規(guī)模要小得多,沒有隊伍完賽因而也沒人獲勝。當時 DARPA 籌辦比賽的背景是伊拉克戰(zhàn)爭(2003 年 3 月發(fā)動)。國防部認為自動駕駛技術能夠為陸軍提供幫助,因而有意推動技術的發(fā)展,比賽場地也有意選在類似于伊拉克地形的沙漠。

大賽的 100 萬美元獎金其實并不多,但足以讓它顯得權威,諾貝爾獎、圖靈獎的獎金也在這個層次。但是,參賽隊伍并不是圖這獎金。即便第二年(2005)獎金抬高到 200 萬美金,我認為意義仍不大。部分第一屆參賽隊伍并沒有參加第二屆,但有許多新團隊加入——因為他們聽說了這場比賽。相比之下,第一屆比賽的賽前宣傳做得不到位,許多有興趣參加的人,聽說的時候已經太晚,來不及改裝一臺車輛參賽。但第一屆比賽讓 DARPA Grand Challenge 為人所知,每個人都知道它要舉辦第二屆。

雷鋒網:你是如何加入斯坦福團隊的?

Adrian Kaehler:先是贏面相當大的卡內基梅?。–MU)自動駕駛團隊老大 Red Whittaker,在位于硅谷的 CMU 西海岸校區(qū)舉行了一場講座。我去聽了,覺得“想做這個事”。

當時在斯坦福的 Sebastian Thrun、Mike Montemerlo 也都放出話來,歡迎更多人加入他們的團隊。我那時在英特爾工作,Gary Bradsky 也是。Sebastian Thrun 和 Gary Bradsky 認識,邀請 Gary 上車。我和 Gary 以及其他幾位英特爾同事就加入了。

有意思的是,整個挑戰(zhàn)賽在某種程度上變成了 CMU 和斯坦福之間的競爭,而  Sebastian Thrun 和 Mike Montemerlo 此前都在 CMU。

雷鋒網:你們這些英特爾的同事,是以個人身份還是以英特爾團隊的身份加入的?

Adrian Kaehler:以個人身份。英特爾直到比賽開始前不久,好像是一個星期,才正式提供贊助,展示它的 logo。

雷鋒網:各只參賽團隊的思路有多大的差異?

Adrian Kaehler:參賽團隊并不都是大學計算機專業(yè)背景。第一屆比賽中涌現(xiàn)了各種各樣的方案,比如用巨型輪胎克服崎嶇地形。有的團隊把重心放在傳統(tǒng)機械,有的靠的是區(qū)域地圖,還有摩托車。

到了 2005 年,不同團隊之間的方案區(qū)別就不大了。大家都意識到開發(fā)一輛新車的工程量太大,最好是利用一輛現(xiàn)有的汽車硬件,加入一些自動駕駛功能,專攻軟件,只做必要的改裝。不過,雖然大家通過第一屆比賽都意識到了這點,但重視程度不一樣。

在我眼里,斯坦福團隊在這方面是比較極端的:采用越野性能很不錯的大眾途銳(即 “Stanley”),盡量少改動懸掛和車輪等原有部件,添加傳感器和計算設備。事實證明,這是一個非常有效的思路。

到了城市挑戰(zhàn)賽,每個人都在搞傳感器和計算機。選的車都是做電氣化改裝比較容易的。比如,2005 年,CMU 用的兩輛車一輛是悍馬 H2,一輛基本是軍用版 Hamvee。Hamvee 的問題是,它的電氣化程度不高,他們需要加入對油門、剎車的電子控制系統(tǒng)。用最新的車,就可以直接借助車輛已有的系統(tǒng),不需要自己裝促動器什么的。城市挑戰(zhàn)賽中有個團隊用了普銳斯。他們能夠通過這輛車現(xiàn)有的電氣系統(tǒng)直接向設備來回傳輸信息,不需要添加促動器。

雷鋒網:斯坦福團隊在 “Stanley”上采取了什么方案?

Adrian Kaehler:那個時候,激光測距儀是比較受歡迎的方案,大多數(shù)車都用它作為主要傳感器。但我和其它來自英特爾的成員則認為計算機視覺(CV)非常重要。Sebastian 對此很不以為然,總是說“我不這么認為”、“我才不會用計算機視覺”、“這技術不穩(wěn)定”。

每周全體隊員都會坐到一起開會。大體思路是基于 Sebastian Thrun 之前的研究。在這之外,團隊有許多不同的想法,嘗試了許多東西。激光測距儀的分析、CV、導航、控制,這些東西當時一點都不清晰。 有許多精彩的討論。Sebastian Thrun 在斯坦福的課上允許學生選擇一些跟我們的參賽車相關的項目。不少學生探索了不同的想法,有很不錯的,也有結果一般的。整個過程是非常動態(tài)的。

我們發(fā)現(xiàn),作為主要傳感器的話,CV 確實還不夠成熟,在那個時候(2005 年),做一個純粹依賴計算機視覺的自動駕駛車不可行。但有些特定問題可以用 CV 解決:CV 技術的探測距離比激光雷達遠得多,能夠提前探測、理解遠處的路況。激光測距儀本來是遠距離的設備,但在自動駕駛場景中,它以偏向地面的角度進行探測、行駛時掃描道路。這個場景下,由于多種因素,它的有效距離并不遠。

當利用 CV 探測遠距離路況,我們能夠決定高速地行駛是否安全。事實上,我們因為這一點才贏了比賽。這一點很有意思——當時所有人都假設,贏得比賽的關鍵是在最難走的部分,比如地面最特別坑洼、崎嶇、需要急轉彎的地方。而在平坦、直線路段,每個隊伍的參賽車輛都會有多快跑多快,就像 indy 500 F1 比賽——獲勝的關鍵是在彎道的表現(xiàn)。但 DARPA 挑戰(zhàn)賽和 F1 賽車完全不一樣,直線路段并不能“有多快跑多快”。而如果你做不到在平坦、較直的路段“有多快跑多快”,崎嶇路段的領先優(yōu)勢完全就喪失了。實際上,那些實力強勁的參賽隊伍通過崎嶇地段的表現(xiàn)都很好,差距不大。最關鍵的反而是最好走的地段:當?shù)孛媲闆r“良好”時,很難決定是以 30 還是 40 英里/小時的速度行駛??雌饋淼孛姹容^平坦,但畢竟不是鋪裝公路,越野車無法高速安全行駛。

我們贏了第二屆 DARPA 挑戰(zhàn)賽,并不是因為在困難地段表現(xiàn)得有多好,而是在平坦的路段,我們能夠識別出這些路段事實上是相對“容易”的,讓車跑得更快。我們發(fā)表了一篇論文來解釋這一點。

簡而言之,我們獲勝,是因為在平坦、空曠地段比其他車隊跑得更快。

雷鋒網:詳細介紹下 CV 和激光雷達在 Stanley 自動駕駛系統(tǒng)中的功能角色?

Adrian Kaehler:CV 讓它看到遠處,細微操作仍然依靠激光雷達。 我不記得當時激光雷達有效探測距離的具體數(shù)字了,但大約是 8 到 10 米。在這距離以內,激光雷達對車輛前方的地形進行細節(jié)豐富的掃描。在這范圍以外,激光雷達對車輛傾斜角度的估計誤差,會導致對地面高度的預測產生更大的誤差。這也是為什么激光雷達的有效范圍最終是取決于車輛傾角的預測準確度,而不是激光的強度。

相比之下,CV 能看到 100 米遠,探測前方的路況是否筆直、平坦,這時候就可以加速。

那時候,CV 的使用很受限制。那之后,出現(xiàn)了更多不同的自動駕駛技術方向。我認為最關鍵的因素是傳感器的成本。購買 Velodyne 64 線雷達仍需要幾萬美元。如果能有效使用 CV,就不需要使用激光雷達。但 CV 方案到底有多可靠?

DARPA 挑戰(zhàn)賽時,我們比其它隊伍對 CV 用的更多。事后對于獲勝的原因,我們做了很細致的分析,結果發(fā)現(xiàn),如果沒有用 CV 只用激光雷達,由于系統(tǒng)反應時間問題,安全行駛速度會遇到瓶頸。比如,激光雷達的探測距離只有 10 米,10 米內突然出現(xiàn)某個障礙必須全力剎車的時候,你必須保證能剎得住。因而時速會有個安全上限,比如每小時 25英里。所有其他團隊都限制了他們的時速,當然,為了安全,這是正確的做法。而我們由于有視覺系統(tǒng),能在至少某些特定路況下突破這一限制。

在好路況上我們以 35、45 英里(舉個例子,我忘記了我們的峰值速度)的時速行駛,而別的隊伍只能開 25 英里/小時。這才是我們獲勝的原因。

如果沒有這套系統(tǒng),我們不會拿下挑戰(zhàn)賽冠軍,CMU 會贏。

雷鋒網:斯坦福團隊獲勝還有哪些原因?

Adrian Kaehler:我之前畫了一個圖:每個團隊花在沙漠(類似 DARPA挑戰(zhàn)賽的環(huán)境) debug 系統(tǒng)的時間,和最終大賽表現(xiàn)幾乎是成完美正比的。在沙漠花費的時間=挑戰(zhàn)賽最終成績。你甚至可以據(jù)此討論,CMU 敗給斯坦福的原因,是否因為他們離沙漠太遠?(CMU 坐落在美國東部匹茲堡,沙漠在中西部)。這方面,地處加州的斯坦福有巨大的主場優(yōu)勢:2005 DARPA挑戰(zhàn)賽在位于加州與內華達州邊界的 Barstow 地區(qū)開展,順便說一句,Barstow 的環(huán)境真是極端惡劣;斯坦福由于離得近,我們團隊得以在那兒訓練。

CMU 由于在東部,大多數(shù)試驗都在與比賽情況并不相近的環(huán)境開展。比如樹更多啦,你可以說這個環(huán)境 3D,會更傾向于從幾何方面入手。他們提前了幾個星期到西部測試、debug,不如斯坦福團隊在沙漠地形測試的時間長。

這很可能是一個合理的論點:CMU 輸給斯坦福,只是因為他們在比賽環(huán)境測試、debug 的時間不如后者。更多 debug 的時間總是需要的。

雷鋒網:你們以及整個團隊的工作重心?

Adrian Kaehler:我認為 Gary Bradsky 的角色是說服 Sebastian 采用計算機視覺(笑)。

至于整個團隊的工作重心,你需要問 Mike Montemerlo 才能特別清楚,他負責監(jiān)督整個項目,與各個小組溝通。工程上,他是整個團隊的核心。

可以肯定的是,大量的努力花在了控制上面。那時候,后預測(post-estimation)和現(xiàn)在很不一樣——把 GPS 信息,IMU,Gyroscope 等信息融合一起,估計車輛的位置是一個非常困難的問題,當時沒有讓人滿意的方案,即便有也買不到。

我后來才知道,在 2005 年的比賽,CMU 獲得了一家名為 The Planet 的公司的后預測系統(tǒng),做的就是上邊說的事,把 GPS、Gyroscope 等各個傳感器的數(shù)據(jù)進行融合,對車輛的移動軌跡和狀態(tài)進行估算。

2005 年,我們也開發(fā)了自己的后預測系統(tǒng)。但到了城市挑戰(zhàn)賽的時候,每個人用的都是第三方的方案。The Planet 也不是唯一一個服務商,大家都把這個作為系統(tǒng)中的一個部件直接買過來,而不是自己開發(fā)。

雷鋒網:你參與 DARPA 挑戰(zhàn)賽最大的收獲?

Adrian Kaehler:我意識到開發(fā)任何類似機器人的東西,機器人體驗的多樣性總是大幅超出你的想象,不管你多么努力地開腦洞。事實上,這就是谷歌自動駕駛汽車一直遇到的困難。世界這么大,可能發(fā)生的奇奇怪怪的事是無限的。 谷歌公布了一系列自動駕駛測試中遇到的特殊情況照片,這些事件為谷歌汽車的 failure mode 做出了貢獻。我記得有一張照片,一個小女孩站在街角,手里牽著一只漂浮的紅色氦氣球。而這個氣球的位置剛好就在紅綠燈里紅燈的位置。而一個好像是樹枝的東西基本遮住了亮起的綠燈。即便是用人眼來看,如果不仔細看,你也會以為那氣球是亮起的紅燈。誰會想到這種情況?如果任何人突發(fā)奇想提出,如果這種情況發(fā)生我們該怎么辦,大家一定會覺得這人有妄想癥。但在現(xiàn)實世界中,這就是發(fā)生了。

即便在對環(huán)境進行了一定控制、導致多樣性有限的挑戰(zhàn)賽,可能發(fā)生的匪夷所思的事仍然非常多。每個團隊成員都有預料之外的情況導致系統(tǒng)宕機的的故事。

這是我參于挑戰(zhàn)賽學到的一大東西。

雷鋒網:期間有哪些具有特殊意義的時刻?

Adrian Kaehler:在項目早期時候,我、Mike Montemerlo 以及另外兩個人開著 Stanley。當時車開得很快,大約每小時 25 英里,在那種崎嶇不平、剛下過雨的非鋪裝沙漠路是相當快了。當時車子在自動駕駛模式,Mike 坐在駕駛位,隨時準備接管。車剛沖下一座山頭,由于前一天下過雨,小山頭底部的視線盲區(qū)有一洼大泥塘,我們完全沒看到,傳感器也看不到,車直接開了上去。濺起的泥巴完全糊住了擋風玻璃,我們什么都看不見。這種情況下,最理想的事是停下車。但是我們每個人都只是尖叫。一直到車開出去大約兩三百米,才有人反應過來打開雨刮,我們才能看見車外面。在這一刻,自動駕駛對我來說成為了現(xiàn)實——如果系統(tǒng)沒能在這兩三百米的距離正常工作,我們就沒命了。

雷鋒網:是否可以認為,自動駕駛產業(yè)誕生于 DARPA 挑戰(zhàn)賽?

Adrian Kaehler:毫無疑問,沒有 DARPA 挑戰(zhàn)賽,就沒有自動駕駛車。這要歸功于當時的 DARPA 負責人 Tony(雷鋒網注:Anthony J. Tether)。某種程度上,斯坦福團隊表現(xiàn)的很好,也做出了一定貢獻。但主要還是 DARPA——這就好比是做 VC,如果投資的初創(chuàng)公司項目太激進,成功的機會渺茫。但如果不夠激進,可能投資了很多錢但最后做出的東西價值有限。對任何科技圈的投資人來說,投資項目應該剛好足夠難,但又可行。Tony 意識到在有限程度上自動駕駛已經觸手可及。你需要知道,在挑戰(zhàn)賽之前,軍隊和大學已經在自動駕駛技術上花了數(shù)十億美元,這并不是完全沒有做過的事。軍火商其實只想著繼續(xù)拿研究經費,對他們來說,成功實現(xiàn)自動駕駛并不是一個好事。

而大學的研究做得是算法或某個部件,而不是開發(fā)一整套自動駕駛系統(tǒng)。Tony 意識到在這個階段,激勵大家開發(fā)整套系統(tǒng),比資助研究員發(fā)論文要重要得多。論文在早期的研究階段非常重要。而 Tony 意識到“我們已經離自動駕駛很近了,再邁一大步,就能搞出一輛自動駕駛車,至少是準自動駕駛車?!?/p>

通過 DARPA,Tony 推動行業(yè)邁出了這“一大步”。第一屆沒有車隊完成,第二屆有六只??梢钥闯鰜?,很多人通過比賽掌握了自動駕駛的基礎,能讓車靠自己行駛。而能否獲勝,就取決于能否理解狀況,在路況良好的地段加速超過別人。挑戰(zhàn)賽之后,每個成績優(yōu)秀隊伍的成員都多多少少跑去涉足了自動駕駛行業(yè)。

雷鋒網:企業(yè)在挑戰(zhàn)賽中的角色并不重要,是嗎?

Adrian Kaehler:并不是。一家軍隊的大型合約供應商 Oshkosh 也參賽了(跑完比賽,獲得第五名)。比賽對于它們的意義不一樣。對大學而言,只是一點名氣。獲勝的兩百萬獎金捐給了斯坦福的計算機系。而對于 Oshkosh,這可能意味著更大的訂單,向客戶證明他們的技術實力。在最后,挑戰(zhàn)賽的最大獲益者或許可以認為是 Oshkosh。斯坦福贏了兩百萬,Oshkosh 的獲益說不定十倍不止。

雷鋒網:當時,DARPA 挑戰(zhàn)賽是否讓大家感到自動駕駛時代即將到來?已經將要應用落地?

Adrian Kaehler:我認為,DARPA 挑戰(zhàn)賽中不存在這種情緒。我們能預見到這些技術被應用于特定場景,但我不認為任何人說過“自動駕駛汽車離我們只有十英尺了”。之后的城市挑戰(zhàn)賽設立了許多目標,在那之前,大家并不是很確定這些是否能實現(xiàn)。而當城市挑戰(zhàn)賽完成,更多現(xiàn)實問題才得以解決,比如檢測“停車”交通標志、如何避讓其他車輛。這時候,全自動駕駛汽車才不再顯得那么遙遠,各種設想才讓人覺得合理。

即便這樣,對于實現(xiàn)自動駕駛到底需要多久,各方觀點非常不一致。謝爾蓋·布林和拉里·佩奇到現(xiàn)場觀看了城市挑戰(zhàn)賽,他們非常感興趣,或者說至少拉里·佩奇很感興趣——賽前他就在斯坦福討論過這場挑戰(zhàn)賽。Sebastian Thrun 加入了谷歌,不久后創(chuàng)立 Google X。就我所知,那時候 Google X 只有一個項目,就是谷歌的自動駕駛泡泡車。很顯然,拉里·佩奇和 Sebastian Thrun 都認為自動駕駛離我們不遠了,但我沒有(笑),因而我沒有下海創(chuàng)業(yè)搞一家自動駕駛公司。我覺得,我們離真正意義上的自動駕駛遠遠算不上接近,這條路需要的時間很長,而我想做的是現(xiàn)在就能落地的東西。因此,我加入了 Applied Minds,后者的客戶包括企業(yè)、政府和軍隊。 在 Applied Minds,我們的工作內容更接近 2005 DARPA 挑戰(zhàn)賽——當時非常重要的一項任務是幫助美軍在阿富汗檢測 IED(自制爆炸裝置)。由于高度危險,軍隊有很強烈的愿望把 IED 搜尋工作自動化。這一場景就和 2005 挑戰(zhàn)賽十分類似——在戰(zhàn)區(qū),你只要不撞到東西就行了,沒人在乎掃雷車是否遵守交通秩序。不撞到人、不撞壞自己、能沿著計劃路線行駛,這個程度的自動駕駛已經足夠在阿富汗戰(zhàn)場派上用場。這是一項之前沒人做過的工作,我對它非常感興趣。

相比之下,乘用車的自動駕駛問題要難太多。今天,雖然大多數(shù)公司在某種程度上做得不錯,但遠遠沒到實現(xiàn)全自動駕駛的程度。

另外,在挑戰(zhàn)賽之后,唯一做得比較多的是谷歌。豐田、本田、福特這些車廠在當時并沒有動作,是在看到谷歌取得的突破之后才著手研究。

雷鋒網:你在 Applied Minds 還做了什么?

Adrian Kaehler:我們開發(fā)了世界上最早的完全基于 CV 的自動駕駛車之一(不確定是不是最早的那一個),幾年后市場上才出現(xiàn)更先進的算法。它并不是城市乘用車,但能夠僅靠 CV 在戶外環(huán)境巡航。在那時候很重要,當時激光雷達幾萬美元一只。

雷鋒網:DARPA之后,你有沒有想過去開發(fā)自動駕駛乘用車?

Adrian Kaehler:我仍然在做自動駕駛工作,只是在 Applied Minds 做的場景不同。那之后,大量金錢涌入城市自動駕駛行業(yè),但各家公司都沒能達到預期。我不認為我會想要在 DARPA 挑戰(zhàn)賽之后到谷歌工作,花上十年開發(fā)沒法用的東西。也許再堅持十年,或者更長,會等到技術派上用場。但我不確定這是一個好選擇。

如果做的事太超前、加入的時機太早,很可能花了半輩子的時間在上面仍然沒有進展。DARPA 挑戰(zhàn)賽那時候,大量關鍵技術還是缺失的。我對深度學習給自動駕駛帶來打開的新大門很興奮,我不知道它是否是完整的答案,但對一些情形,比如小女孩拿著紅氣球,在深度學習之前,并沒有實用的解決方法。

雷鋒網:大多數(shù)車廠把全自動駕駛車量產的時間點定在 2021 年或更早。你怎么看?

Adrian Kaehler:這就好比說到 2021 年我們會解決弦理論,我不知道對這類聲明該如何解讀。宣稱“我們將盡力去實現(xiàn)”還差不多。等到 2021年,自動駕駛車量產了,他們會說“我們做到了”;沒有量產,他們會說“我們還需要幾年的時間”。這里面有太多的意外情形,就像美國政客的一句話 “Unknow Unknowns”。如果現(xiàn)在沒有一輛完全安全的全自動駕駛車,在 2021 年實現(xiàn)量產就絕對不可能。 如果汽車制造商說 2021 年他們會開發(fā)出一輛原型車,然后再推進量產,“OK,maybe”。但 2021 年實現(xiàn)量產?這就是個玩笑。汽車制造商無法在四年的時間內完成任何東西。

在部署自動駕駛車方面,或許特斯拉會是個例外。他們的基礎設施夠雄厚,也提前計劃了很久。但這過程中會有太多意外發(fā)現(xiàn),單是解決這些問題的時間就夠緊張,更何況設計、管理生產線。

雷峰網原創(chuàng)文章,未經授權禁止轉載。詳情見轉載須知。

分享:
相關文章
當月熱門文章
最新文章
請?zhí)顚懮暾埲速Y料
姓名
電話
郵箱
微信號
作品鏈接
個人簡介
為了您的賬戶安全,請驗證郵箱
您的郵箱還未驗證,完成可獲20積分喲!
請驗證您的郵箱
立即驗證
完善賬號信息
您的賬號已經綁定,現(xiàn)在您可以設置密碼以方便用郵箱登錄
立即設置 以后再說