丁香五月天婷婷久久婷婷色综合91|国产传媒自偷自拍|久久影院亚洲精品|国产欧美VA天堂国产美女自慰视屏|免费黄色av网站|婷婷丁香五月激情四射|日韩AV一区二区中文字幕在线观看|亚洲欧美日本性爱|日日噜噜噜夜夜噜噜噜|中文Av日韩一区二区

您正在使用IE低版瀏覽器,為了您的雷峰網(wǎng)賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
此為臨時鏈接,僅用于文章預覽,將在時失效
人工智能開發(fā)者 正文
發(fā)私信給AI研習社
發(fā)送

0

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

本文作者: AI研習社 2017-11-28 16:14
導語:介紹下我所認識的目標跟蹤...

雷鋒網(wǎng)按:本文作者YaqiLYU,本文由雷鋒網(wǎng)整理自作者在知乎《計算機視覺中,目前有哪些經典的目標跟蹤算法?》問題下的回答。雷鋒網(wǎng)已獲得轉載授權。

相信很多來這里的人和我第一次到這里一樣,都是想找一種比較好的目標跟蹤算法,或者想對目標跟蹤這個領域有比較深入的了解,雖然這個問題是經典目標跟蹤算法,但事實上,可能我們并不需要那些曾經輝煌但已被拍在沙灘上的tracker(目標跟蹤算法),而是那些即將成為經典的,或者就目前來說最好用、速度和性能都看的過去tracker。我比較關注目標跟蹤中的相關濾波方向,接下來我?guī)湍榻B下我所認識的目標跟蹤,尤其是相關濾波類方法,分享一些我認為比較好的算法,順便談談我的看法。

第五部分:邊界效應

接下來到了VOT2015競賽 VOT2015 Challenge | Home ,這一年有60個精挑細選的序列,62個tracker,最大看點是深度學習開始進擊tracking領域,MDNet直接拿下當年的冠軍,而結合深度特征的相關濾波方法DeepSRDCF是第二名,主要解決邊界效應的SRDCF僅HOG特征排在第四:

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

隨著VOT競賽的影響力擴大,舉辦方也是用心良苦,經典的和頂尖的齊聚一堂,百家爭鳴,多達62個tracker皇城PK,華山論劍。除了前面介紹的深度學習和相關濾波,還有結合object proposals(類物體區(qū)域檢測)的EBT(EBT:Proposal與Tracking不得不說的秘密 - 知乎專欄)排第三,Mean-Shift類顏色算法ASMS是推薦實時算法,還有前面提到的另一個顏色算法DAT,而在第9的那個Struck已經不是原來的Struck了。除此之外,還能看到經典方法如OAB, STC, CMT, CT, NCC等都排在倒數(shù)位置, 經典方法已經被遠遠甩在后面。

在介紹SRDCF之前,先來分析下相關濾波有什么缺點。總體來說,相關濾波類方法對快速變形和快速運動情況的跟蹤效果不好。

快速變形主要因為CF是模板類方法。容易跟丟這個比較好理解,前面分析了相關濾波是模板類方法,如果目標快速變形,那基于HOG的梯度模板肯定就跟不上了,如果快速變色,那基于CN的顏色模板肯定也就跟不上了。這個還和模型更新策略與更新速度有關,固定學習率的線性加權更新,如果學習率太大,部分或短暫遮擋和任何檢測不準確,模型就會學習到背景信息,積累到一定程度模型跟著背景私奔了,一去不復返。如果學習率太小,目標已經變形了而模板還是那個模板,就會變得不認識目標。

快速運動主要是邊界效應(Boundary Effets),而且邊界效應產生的錯誤樣本會造成分類器判別力不夠強,下面分訓練階段和檢測階段分別討論。

訓練階段,合成樣本降低了判別能力。如果不加余弦窗,那么移位樣本是長這樣的:

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

除了那個最原始樣本,其他樣本都是“合成”的,100*100的圖像塊,只有1/10000的樣本是真實的,這樣的樣本集根本不能拿來訓練。如果加了余弦窗,由于圖像邊緣像素值都是0,循環(huán)移位過程中只要目標保持完整,就認為這個樣本是合理的,只有當目標中心接近邊緣時,目標跨越了邊界的那些樣本是錯誤的,這樣雖不真實但合理的樣本數(shù)量增加到了大約2/3(一維情況padding= 1)。但我們不能忘了即使這樣仍然有1/3(3000/10000)的樣本是不合理的,這些樣本會降低分類器的判別能力。再者,加余弦窗也不是“免費的”,余弦窗將圖像塊的邊緣區(qū)域像素全部變成0,大量過濾掉了分類器本來非常需要學習的背景信息,原本訓練時判別器能看到的背景信息就非常有限,我們還加了個余弦窗擋住了背景,這樣進一步降低了分類器的判別力(是不是上帝在我前遮住了簾。。不是上帝,是余弦窗)。

檢測階段,相關濾波對快速運動的目標檢測比較乏力。相關濾波訓練的圖像塊和檢測的圖像塊大小必須是一樣的,這就是說你訓練了一個100*100的濾波器,那你也只能檢測100*100的區(qū)域,如果打算通過加更大的padding來擴展檢測區(qū)域,那樣除了擴展了復雜度,并不會有什么好處。目標運動可能是目標自身移動,或攝像機移動,按照目標在檢測區(qū)域的位置分四種情況來看:

如果目標在中心附近,檢測準確且成功。

如果目標移動到了邊界附近但還沒有出邊界,加了余弦窗以后,部分目標像素會被過濾掉,這時候就沒法保證這里的響應是全局最大的,而且,這時候的檢測樣本和訓練過程中的那些不合理樣本很像,所以很可能會失敗。

如果目標的一部分已經移出了這個區(qū)域,而我們還要加余弦窗,很可能就過濾掉了僅存的目標像素,檢測失敗。

如果整個目標已經位移出了這個區(qū)域,那肯定就檢測失敗了。

以上就是邊界效應(Boundary Effets),推薦兩個主流的解決邊界效應的方法,其中SRDCF速度比較慢,并不適合實時場合。

Martin DanelljanSRDCF Learning Spatially Regularized Correlation Filters for Visual Tracking,主要思路:既然邊界效應發(fā)生在邊界附近,那就忽略所有移位樣本的邊界部分像素,或者說限制讓邊界附近濾波器系數(shù)接近0:

  • Danelljan M, Hager G, Shahbaz Khan F, et al. Learning spatially regularized correlation filters for visual tracking [C]// ICCV. 2015.

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

SRDCF基于DCF,類SAMF多尺度,采用更大的檢測區(qū)域(padding = 4),同時加入空域正則化,懲罰邊界區(qū)域的濾波器系數(shù),由于沒有閉合解,采用高斯-塞德爾方法迭代優(yōu)化。檢測區(qū)域擴大(1.5->4),迭代優(yōu)化(破壞了閉合解)導致SRDCF只有5FP,但效果非常好是2015年的baseline。

另一種方法是Hamed Kiani提出的MOSSE改進算法,基于灰度特征的CFLM Correlation Filters with Limited Boundaries 和基于HOG特征的BACF Learning Background-Aware Correlation Filters for Visual Tracking,主要思路是采用較大尺寸檢測圖像塊和較小尺寸濾波器來提高真實樣本的比例,或者說濾波器填充0以保持和檢測圖像一樣大,同樣沒有閉合解,采用ADMM迭代優(yōu)化:

  • Kiani Galoogahi H, Sim T, Lucey S. Correlation filters with limited boundaries [C]// CVPR, 2015.

  • Kiani Galoogahi H, Fagg A, Lucey S. Learning Background-Aware Correlation Filters for Visual Tracking [C]// ICCV, 2017.

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

CFLB僅單通道灰度特征,雖然速度比較快167FPS,但性能遠不如KCF,不推薦;最新BACF將特征擴展為多通道HOG特征,性能超過了SRDCF,而且速度比較快35FPS,非常推薦。

其實這兩個解決方案挺像的,都是用更大的檢測及更新圖像塊,訓練作用域比較小的相關濾波器,不同點是SRDCF的濾波器系數(shù)從中心到邊緣平滑過渡到0,而CFLM直接用0填充濾波器邊緣。

VOT2015相關濾波方面還有排在第二名,結合深度特征的DeepSRDCF,因為深度特征都非常慢,在CPU上別說高速,實時都到不了,雖然性能非常高,但這里就不推薦,先跳過。

第六部分:顏色直方圖與相關濾波

VOT2016競賽 VOT2016 Challenge | Home,依然是VOT2015那60個序列,不過這次做了重新標注更加公平合理,今年有70位參賽選手,意料之中深度學習已經雄霸天下了,8個純CNN方法和6個結合深度特征的CF方法大都名列前茅,還有一片的CF方法,最最最重要的是,良心舉辦方竟然公開了他們能拿到的38個tracker,部分tracker代碼和主頁,下載地址:VOT2016 Challenge | Trackers ,注意部分是下載鏈接,部分是源碼壓縮包,部分源碼是二進制文件,好不好用一試便知,方便對比和研究,需要的趕快去試試。馬上來看競賽結果(這里僅列舉前60個):

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

高亮標出來了前面介紹過的或比較重要的方法,結合多層深度特征的相關濾波C-COT排第一名,而CNN方法TCNN是VOT2016的冠軍,作者也是VOT2015冠軍MDNet,純顏色方法DATASMS都在中等水平(其實兩種方法實測表現(xiàn)非常接近),其他tracker的情況請參考論文。再來看速度,SMACF沒有公開代碼,ASMS依然那么快,排在前10的方法中也有兩個速度比較快,分別是排第5的Staple,和其改進算法排第9的STAPLE+,而且STAPLE+是今年的推薦實時算法。首先恭喜Luca Bertinetto的SiamFCStaple都表現(xiàn)非常不錯,然后再為大牛默哀三分鐘(VOT2016的paper原文):

This was particularly obvious in case of SiamFC trackers, which runs orders higher than realtime (albeit on GPU), and Staple, which is realtime, but are incorrectly among the non-realtime trackers.

VOT2016竟然發(fā)生了烏龍事件,Staple在論文中CPU上是80FPS,怎么EFO在這里只有11?幸好公開代碼有Staple和STAPLE+,實測下來,雖然我電腦不如Luca Bertinetto大牛但Staple我也能跑76FPS,而更可笑的是,STAPLE+比Staple慢了大約7-8倍,竟然EFO高出4倍,到底怎么回事呢?

首先看Staple的代碼,如果您直接下載Staple并設置params.visualization = 1,Staple默認調用Computer Vision System Toolbox來顯示序列圖像,而恰好如果您沒有這個工具箱,默認每幀都會用imshow(im)來顯示圖像,所以非常非常慢,而設置params.visualization = 0就跑的飛快(作者你是孫猴子派來的逗逼嗎),建議您將顯示圖像部分代碼替換成DSST中對應部分代碼就可以正常速度運行和顯示了。

再來看STAPLE+的代碼,對Staple的改進包括額外從顏色概率圖中提取HOG特征,特征增加到56通道(Staple是28通道),平移檢測額外加入了大位移光流運動估計的響應,所以才會這么慢,而且肯定要慢很多。

所以很大可能是VOT舉辦方把Staple和STAPLE+的EFO弄反了,VOT2016的實時推薦算法應該是排第5的Staple,相關濾波結合顏色方法,沒有深度特征更沒有CNN,跑80FPS還能排在第五,這就是接下來主要介紹的,2016年最NIUBILITY的目標跟蹤算法之一Staple (直接讓排在后面的一眾深度學習算法懷疑人生)。

顏色特征,在目標跟蹤中顏色是個非常重要的特征,不管多少個人在一起,只要目標穿不用顏色的一幅就非常明顯。前面介紹過2014年CVPR的CN是相關濾波框架下的模板顏色方法,這里隆重介紹統(tǒng)計顏色特征方法DAT Learning, Recognition, and Surveillance @ ICG ,幀率15FPS推薦:

  • Possegger H, Mauthner T, Bischof H. In defense of color-based model-free tracking [C]// CVPR, 2015.

DAT統(tǒng)計前景目標和背景區(qū)域的顏色直方圖并歸一化,這就是前景和背景的顏色概率模型,檢測階段,貝葉斯方法判別每個像素屬于前景的概率,得到像素級顏色概率圖,再加上邊緣相似顏色物體抑制就能得到目標的區(qū)域了。

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

如果要用一句話介紹Luca Bertinetto(牛津大學)的Staple Staple tracker,那就是把模板特征方法DSST(基于DCF)和統(tǒng)計特征方法DAT結合:

  • Bertinetto L, Valmadre J, Golodetz S, et al. Staple: Complementary Learners for Real-Time Tracking [C]// CVPR, 2016.

前面分析了相關濾波模板類特征(HOG)對快速變形和快速運動效果不好,但對運動模糊光照變化等情況比較好;而顏色統(tǒng)計特征(顏色直方圖)對變形不敏感,而且不屬于相關濾波框架沒有邊界效應,快速運動當然也是沒問題的,但對光照變化和背景相似顏色不好。綜上,這兩類方法可以互補,也就是說DSST和DAT可以互補結合:

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

兩個框架的算法高效無縫結合,25FPS的DSST和15FPS的DAT,而結合后速度竟然達到了80FPS。DSST框架把跟蹤劃分為兩個問題,即平移檢測和尺度檢測,DAT就加在平移檢測部分,相關濾波有一個響應圖,像素級前景概率也有一個響應圖,兩個響應圖線性加權得到最終響應圖,其他部分與DSST類似,平移濾波器、尺度濾波器和顏色概率模型都以固定學習率線性加權更新。

另一種相關濾波結合顏色概率的方法是17CVPR的CSR-DCF,提出了空域可靠性和通道可靠性,沒有深度特征性能直逼C-COT,速度可觀13FPS

  • Luke?i? A, Vojí? T, ?ehovin L, et al. Discriminative Correlation Filter with Channel and Spatial Reliability [C]// CVPR, 2017.

CSR-DCF中的空域可靠性得到的二值掩膜就類似于CFLM中的掩膜矩陣P,在這里自適應選擇更容易跟蹤的目標區(qū)域且減小邊界效應;以往多通道特征都是直接求和,而CSR-DCF中通道采用加權求和,而通道可靠性就是那個自適應加權系數(shù)。采用ADMM迭代優(yōu)化,可以看出CSR-DCF是DAT和CFLB的結合算法。

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

VOT2015相關濾波還有排第一名的C-COT(別問我第一名為什么不是冠軍,我也不知道),和DeepSRDCF一樣先跳過。

第七部分:long-term和跟蹤置信度

以前提到的很多CF算法,也包括VOT競賽,都是針對short-term的跟蹤問題,即短期(shor-term)跟蹤,我們只關注短期內(如100~500幀)跟蹤是否準確。但在實際應用場合,我們希望正確跟蹤時間長一點,如幾分鐘或十幾分鐘,這就是長期(long-term)跟蹤問題。

Long-term就是希望tracker能長期正確跟蹤,我們分析了前面介紹的方法不適合這種應用場合,必須是short-term tracker + detecter配合才能實現(xiàn)正確的長期跟蹤。

用一句話介紹Long-term,就是給普通tracker配一個detecter,在發(fā)現(xiàn)跟蹤出錯的時候調用自帶detecter重新檢測并矯正tracker。

介紹CF方向一篇比較有代表性的long-term方法,Chao Ma的LCT chaoma99/lct-tracker

  • Ma C, Yang X, Zhang C, et al. Long-term correlation tracking[C]// CVPR, 2015.

LCT在DSST一個平移相關濾波Rc和一個尺度相關濾波的基礎上,又加入第三個負責檢測目標置信度的相關濾波Rt,檢測模塊Online Detector是TLD中所用的隨機蔟分類器(random fern),在代碼中改為SVM。第三個置信度濾波類似MOSSE不加padding,而且特征也不加cosine窗,放在平移檢測之后。

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

  1. 如果最大響應小于第一個閾值(叫運動閾值),說明平移檢測不可靠,調用檢測模塊重新檢測。注意,重新檢測的結果并不是都采納的,只有第二次檢測的最大響應值比第一次檢測大1.5倍時才接納,否則,依然采用平移檢測的結果。

  2. 如果最大響應大于第二個閾值(叫外觀閾值),說明平移檢測足夠可信,這時候才以固定學習率在線更新第三個相關濾波器和隨機蔟分類器。注意,前兩個相關濾波的更新與DSST一樣,固定學習率在線每幀更新。

LCT加入檢測機制,對遮擋和出視野等情況理論上較好,速度27fps,實驗只跑了OTB-2013,跟蹤精度非常高,根據(jù)其他論文LCT在OTB-2015和 VOT上效果略差一點可能是兩個核心閾值沒有自適應, 關于long-term,TLD和LCT都可以參考 。

接下來介紹跟蹤置信度。 跟蹤算法需要能反映每一次跟蹤結果的可靠程度,這一點非常重要,不然就可能造成跟丟了還不知道的情況。生成類(generative)方法有相似性度量函數(shù),判別類(discriminative)方法有機器學習方法的分類概率。有兩種指標可以反映相關濾波類方法的跟蹤置信度:前面見過的最大響應值,和沒見過的響應模式,或者綜合反映這兩點的指標。

LMCF(MM Wang的目標跟蹤專欄:目標跟蹤算法 - 知乎專欄 )提出了多峰檢測和高置信度更新:

  • Wang M, Liu Y, Huang Z. Large Margin Object Tracking with Circulant Feature Maps [C]// CVPR, 2017.

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

高置信度更新,只有在跟蹤置信度比較高的時候才更新跟蹤模型,避免目標模型被污染,同時提升速度。  第一個置信度指標是最大響應分數(shù)Fmax,就是最大響應值(Staple和LCT中都有提到)。 第二個置信度指標是平均峰值相關能量(average peak-to correlation energy, APCE),反應響應圖的波動程度和檢測目標的置信水平,這個(可能)是目前最好的指標,推薦:

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

跟蹤置信度指標還有,MOSSE中的峰值旁瓣比(Peak to Sidelobe Ratio, PSR), 由相關濾波峰值,與11*11峰值窗口以外旁瓣的均值與標準差計算得到,推薦:

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

還有CSR-DCF的空域可靠性,也用了兩個類似指標反映通道可靠性, 第一個指標也是每個通道的最大響應峰值,就是Fmax,第二個指標是響應圖中第二和第一主模式之間的比率,反映每個通道響應中主模式的表現(xiàn)力,但需要先做極大值檢測:

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

第八部分:卷積特征

最后這部分是Martin Danelljan的專場,主要介紹他的一些列工作,尤其是結合深度特征的相關濾波方法,代碼都在他主頁Visual Tracking,就不一一貼出了。

  • Danelljan M, Shahbaz Khan F, Felsberg M, et al. Adaptive color attributes for real-time visual tracking [C]// CVPR, 2014.

CN中提出了非常重要的多通道顏色特征Color Names,用于CSK框架取得非常好得效果,還提出了加速算法CN2,通過類PCA的自適應降維方法,對特征通道數(shù)量降維(10 -> 2),平滑項增加跨越不同特征子空間時的代價,也就是PCA中的協(xié)方差矩陣線性更新防止降維矩陣變化太大。

  • Danelljan M, Hager G, Khan F S, et al. Discriminative Scale Space Tracking [J]. IEEE TPAMI, 2017.

DSST是VOT2014的第一名,開創(chuàng)了平移濾波+尺度濾波的方式。在fDSST中對DSST進行加速,PCA方法將平移濾波HOG特征的通道降維(31 -> 18),QR方法將尺度濾波器~1000*17的特征降維到17*17,最后用三角插值(頻域插值)將尺度數(shù)量從17插值到33以獲得更精確的尺度定位。

SRDCF是VOT2015的第四名,為了減輕邊界效應擴大檢測區(qū)域,優(yōu)化目標增加了空間約束項,用高斯-塞德爾方法迭代優(yōu)化,并用牛頓法迭代優(yōu)化平移檢測的子網(wǎng)格精確目標定位。

  • Danelljan M, Hager G, Shahbaz Khan F, et al. Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking [C]// CVPR, 2016.

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

SRDCFdecon在SRDCF的基礎上,改進了樣本和學習率問題。以前的相關濾波都是固定學習率線性加權更新模型,雖然這樣比較簡單不用保存以前樣本,但在定位不準確、遮擋、背景擾動等情況會污染模型導致漂移。SRDCFdecon選擇保存以往樣本(圖像塊包括正,負樣本),在優(yōu)化目標函數(shù)中添加樣本權重參數(shù)和正則項,采用交替凸搜索,首先固定樣本權重,高斯-塞德爾方法迭代優(yōu)化模型參數(shù),然后固定模型參數(shù),凸二次規(guī)劃方法優(yōu)化樣本權重。

  • Danelljan M, Hager G, Shahbaz Khan F, et al. Convolutional features for correlation filter based visual tracking [C]// ICCVW, 2015.

DeepSRDCF是VOT2015的第二名,將SRDCF中的HOG特征替換為CNN中單層卷積層的深度特征(也就是卷積網(wǎng)絡的激活值),效果有了極大提升。這里用imagenet-vgg-2048 network,VGG網(wǎng)絡的遷移能力比較強,而且MatConvNet就是VGG組的,MATLAB調用非常方便。論文還測試了不同卷積層在目標跟蹤任務中的表現(xiàn):

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

第1層表現(xiàn)最好,第2和第5次之。由于卷積層數(shù)越高語義信息越多,但紋理細節(jié)越少,從1到4層越來越差的原因之一就是特征圖的分辨率越來越低,但第5層反而很高,是因為包括完整的語義信息,判別力比較強(本來就是用來做識別的)。

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

注意區(qū)分這里的深度特征和基于深度學習的方法,深度特征來自ImageNet上預訓練的圖像分類網(wǎng)絡,沒有fine-turn這一過程,不存在過擬合的問題。而基于深度學習的方法大多需要在跟蹤序列上end-to-end訓練或fine-turn,如果樣本數(shù)量和多樣性有限就很可能過擬合。

  • Ma C, Huang J B, Yang X, et al. Hierarchical convolutional features for visual tracking [C]// ICCV, 2015.

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

值得一提的還有Chao Ma的HCF,結合多層卷積特征提升效果,用了VGG19的Conv5-4, Conv4-4和Conv3-4的激活值作為特征,所有特征都縮放到圖像塊分辨率,雖然按照論文應該是由粗到細確定目標,但代碼中比較直接,三種卷積層的響應以固定權值1, 0.5, 0.02線性加權作為最終響應。雖然用了多層卷積特征,但沒有關注邊界效應而且線性加權的方式過于簡單,HCF在VOT2016僅排在28名(單層卷積深度特征的DeepSRDCF是第13名)。

  • Danelljan M, Robinson A, Khan F S, et al. Beyond correlation filters: Learning continuous convolution operators for visual tracking [C]// ECCV, 2016.

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

C-COT是VOT2016的第一名,綜合了SRDCF的空域正則化和SRDCFdecon的自適應樣本權重,還將DeepSRDCF的單層卷積的深度特征擴展為多成卷積的深度特征(VGG第1和5層),為了應對不同卷積層分辨率不同的問題,提出了連續(xù)空間域插值轉換操作,在訓練之前通過頻域隱式插值將特征圖插值到連續(xù)空域,方便集成多分辨率特征圖,并且保持定位的高精度。目標函數(shù)通過共軛梯度下降方法迭代優(yōu)化,比高斯-塞德爾方法要快,自適應樣本權值直接采用先驗權值,沒有交替凸優(yōu)化過程,檢測中用牛頓法迭代優(yōu)化目標位置。

注意以上SRDCF, SRDCFdecon,DeepSRDCF,C-COT都無法實時,這一系列工作雖然效果越來越好,但也越來越復雜,在相關濾波越來越慢失去速度優(yōu)勢的時候,Martin Danelljan在2017CVPR的ECO來了一腳急剎車,大神來告訴我們什么叫又好又快,不忘初心:

  • Danelljan M, Bhat G, Khan F S, et al. ECO: Efficient Convolution Operators for Tracking [C]// CVPR, 2017.

ECO是C-COT的加速版,從模型大小、樣本集大小和更新策略三個方便加速,速度比C-COT提升了20倍,加量還減價,EAO提升了13.3%,最最最厲害的是, hand-crafted features的ECO-HC有60FPS。。吹完了,來看看具體做法。

第一減少模型參數(shù),定義了factorized convolution operator(分解卷積操作),效果類似PCA,用PCA初始化,然后僅在第一幀優(yōu)化這個降維矩陣,以后幀都直接用,簡單來說就是有監(jiān)督降維,深度特征時模型參數(shù)減少了80%。

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

第二減少樣本數(shù)量, compact generative model(緊湊的樣本集生成模型),采用Gaussian Mixture Model (GMM)合并相似樣本,建立更具代表性和多樣性的樣本集,需要保存和優(yōu)化的樣本集數(shù)量降到C-COT的1/8。

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

第三改變更新策略,sparser updating scheme(稀疏更新策略),每隔5幀做一次優(yōu)化更新模型參數(shù),不但提高了算法速度,而且提高了對突變,遮擋等情況的穩(wěn)定性。但樣本集是每幀都更新的,稀疏更新并不會錯過間隔期的樣本變化信息。

ECO的成功當然還有很多細節(jié),而且有些我也看的不是很懂,總之很厲害就是了。。ECO實驗跑了四個庫(VOT2016, UAV123, OTB-2015, and TempleColor)都是第一,而且沒有過擬合的問題,僅性能來說ECO是目前最好的相關濾波算法,也有可能是最好的目標跟蹤算法。hand-crafted features版本的ECO-HC,降維部分原來HOG+CN的42維特征降到13維,其他部分類似,實驗結果ECO-HC超過了大部分深度學習方法,而且論文給出速度是CPU上60FPS。

最后是來自Luca Bertinetto的CFNet End-to-end representation learning for Correlation Filter based tracking,除了上面介紹的相關濾波結合深度特征,相關濾波也可以end-to-end方式在CNN中訓練了:

  • Valmadre J, Bertinetto L, Henriques J F, et al. End-to-end representation learning for Correlation Filter based tracking [C]// CVPR, 2017.

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

在SiamFC的基礎上,將相關濾波也作為CNN中的一層,最重要的是cf層的前向傳播和反向傳播公式推導,兩層卷積層的CFNet在GPU上是75FPS,綜合表現(xiàn)并沒有很多驚艷,可能是難以處理CF層的邊界效應吧,持觀望態(tài)度。

第九部分:2017年CVPR和ICCV結果

下面是CVPR 2017的目標跟蹤算法結果:可能MD大神想說,一個能打的都沒有!

仿照上面的表格,整理了ICCV 2017的相關論文結果對比ECO:哎,還是一個能打的都沒有!

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

第十部分:大牛推薦

湊個數(shù),目前相關濾波方向貢獻最多的是以下兩個組(有創(chuàng)新有代碼):

牛津大學:Joao F. HenriquesLuca Bertinetto,代表:CSK, KCF/DCF, Staple, CFNet (其他SiamFC, Learnet).

林雪平大學:Martin Danelljan,代表:CN, DSST, SRDCF, DeepSRDCF, SRDCFdecon, C-COT, ECO.

國內也有很多高校的優(yōu)秀工作就不一一列舉了。


【計算機視覺基礎入門課程(從算法到實戰(zhàn)應用】

上海交通大學博士講師團隊,BAT實習背景;手把手項目演示,全程提供代碼;從算法到實戰(zhàn)應用,涵蓋CV領域主要知識點;深度剖析CV研究體系,輕松實戰(zhàn)深度學習應用領域!

課程地址:http://www.ozgbdpf.cn/special/mooc/05.html

加入AI慕課學院人工智能學習交流QQ群:624413030,與AI同行一起交流成長



雷峰網(wǎng)版權文章,未經授權禁止轉載。詳情見轉載須知。

計算機視覺中,有哪些比較好的目標跟蹤算法?(下)

分享:
相關文章

編輯

聚焦數(shù)據(jù)科學,連接 AI 開發(fā)者。更多精彩內容,請訪問:yanxishe.com
當月熱門文章
最新文章
請?zhí)顚懮暾埲速Y料
姓名
電話
郵箱
微信號
作品鏈接
個人簡介
為了您的賬戶安全,請驗證郵箱
您的郵箱還未驗證,完成可獲20積分喲!
請驗證您的郵箱
立即驗證
完善賬號信息
您的賬號已經綁定,現(xiàn)在您可以設置密碼以方便用郵箱登錄
立即設置 以后再說