丁香五月天婷婷久久婷婷色综合91|国产传媒自偷自拍|久久影院亚洲精品|国产欧美VA天堂国产美女自慰视屏|免费黄色av网站|婷婷丁香五月激情四射|日韩AV一区二区中文字幕在线观看|亚洲欧美日本性爱|日日噜噜噜夜夜噜噜噜|中文Av日韩一区二区

您正在使用IE低版瀏覽器,為了您的雷峰網(wǎng)賬號安全和更好的產(chǎn)品體驗,強烈建議使用更快更安全的瀏覽器
此為臨時鏈接,僅用于文章預覽,將在時失效
人工智能 正文
發(fā)私信給AI研習社-譯站
發(fā)送

1

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

本文作者: AI研習社-譯站 2018-06-26 20:26
導語:我們通過將神經(jīng)網(wǎng)絡連接到外部存儲資源來擴展神經(jīng)網(wǎng)絡的功能,通過記憶過程與這些資源進行交互。

雷鋒網(wǎng)按:本文為雷鋒字幕組編譯的技術博客,原標題Neural Turing Machines: a fundamental approach to access memory in deep learning,作者為Jonathan Hui。

翻譯 | 趙朋飛    校對 |  凡江

內存是大腦和計算機的主要部件。在很多深度學習領域,我們通過和記憶匹配來擴展深度網(wǎng)絡的能力,例如,提問與回答,我們先記憶或存儲事先處理的信息,然后使用這些信息回答問題。來自神經(jīng)圖靈機(NTM)論文(https://arxiv.org/pdf/1410.5401.pdf):

我們通過將神經(jīng)網(wǎng)絡連接到外部存儲資源來擴展神經(jīng)網(wǎng)絡的功能,通過記憶過程與這些資源進行交互。  

在外行看來,我們創(chuàng)建了一個記憶結構,通常是數(shù)組,我們向記憶結構中寫入或從其中讀取數(shù)據(jù)。聽起來很簡單:但事實并非如此。首先,我們沒有無限的存儲空間用來保存我們遇到的圖片或聲音,我們是通過相似性或相關性來訪問信息(并不完全匹配)。在這篇文章中,討論了如何使用NTM來處理信息。我們之所對這篇論文感興趣,主要是因為在包括NLP和元學習等很多研究領域,她都是一個重要的起點。


記憶結構

我們的記憶結構Mt包含N行,M個元素。每行代表一條信息(記憶),例如,你對表兄的描述。

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法


讀取

通常編程中,我們使用Mt[i]訪問記憶。但對于人工智能來說,我么通過相似性獲取信息。所以我們推出了一個使用權重的閱讀機制,也就是說,我們得到的結果是內存的加權和。

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

所有權值總和等于1。

你可能立即會問這樣做的目的是什么。讓我們通過一個例子來解釋。一個朋友遞給你一杯飲料,它嘗起來有點像茶,并感覺像牛奶,通過提取茶和牛奶的記憶資料,應用線性代數(shù)方法得出結論:它是珍珠奶茶。聽起來很神奇,但在單詞潛入中,我們也使用了相同的線性代數(shù)來處理關系。在其他的例子比如提問和回答中,基于累計的知識來合并信息是非常重要的。一個記憶網(wǎng)絡會讓我們很好的達成目標。

我們如何創(chuàng)建這些權值呢? 當然,需要依靠深度學習??刂破鲝妮斎胄畔⒅刑崛√卣鳎╧t),我們利用它計算權值。例如,你打電話時,不能立即分辨出對方的聲音,這個聲音很像你的表弟,但有似乎又像你的哥哥。通過線性代數(shù),我們可能分辨出他是你的高中同學,即便那個聲音完全不像你記憶中的樣子。

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

通過計算權值w,對比kt和我們每條記憶的相似性,我們用余弦相似性計算出了一個分數(shù)K。

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

這里, u是我們提取的特征量kt,v代表我們內存中的每一行。

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

我們將softmax函數(shù)應用于分數(shù)K,來計算權值w。 βt 被添加進來用于放大或縮小分數(shù)的差異。 例如,如果它大于1,就放大差異。w基于相似性檢索信息,我們稱之為內容尋址。

寫入

我們如何將信息寫入記憶。在 LSTM中,一個記憶單元的內部狀態(tài)由之前的狀態(tài)和當前輸入值共同決定。借用相同的情形,記憶的寫入過程也是由之前的狀態(tài)和新的輸入組成。這里我們先清除部分之前的狀態(tài):

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

 et是一個清除向量。 (計算過程就像LSTM中的輸入門一樣)

然后,我們寫入新的信息。

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

at是我們想添加的值。

這里,通過產(chǎn)生w的控制器,我們可以向記憶中寫入或讀取信息。

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法來源https://arxiv.org/pdf/1410.5401.pdf


尋址機制

我們的控制器通過計算w來提取信息,但是采用相似性(內容尋址)來提取信息還不夠強大。

補充

w表示我們記憶中當前的焦點(注意力)。在內容尋址中,我們的關注點只基于是新的輸入。然而,這不足以解釋我們最近遇到的問題。例如,你的同班同學在一小時之前發(fā)信息給你,你應該可以很容易 回想起他的聲音。在獲取新的信息時我們如何利用之前的注意力?我們根據(jù)當前的焦點和之前的焦點 計算出合并權值。是的,這挺起來有點像LSTM或GRU中的遺忘門。

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

根據(jù)之前的焦點和當前輸入計算出g。

卷積變換

卷積變換完成焦點的變換。它并不是特地為深度學習設計的。相反,她揭示了NTM如何執(zhí)行像復制與排序這樣的基礎算法。例如,不用通過訪問w[4],我們想把每個焦點移動3行,也就是 w[i] ← w[i+3]。

在卷積變換中,我們可以將需要的焦點移動到指定的行,即w[i] ←卷積(w[i+3], w[i+4], w[i+5] )  。通常,卷積僅僅是行的線性加權和: 0.3 × w[i+3] + 0.5 × w[i+4] + 0.2 × w[i+5]。

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

這是焦點變換的數(shù)學公式:

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

在很多深度學習模型中,我么忽略這一步或者設置s(i)為 0,s(0) = 1例外。

銳化

我們的卷積移位就像一個卷積模糊濾波器。所以在有需要時,我們會對權值采用用銳化技術,達到模糊的效果,γ將會是在銳化焦點時控制器輸出的另一個參數(shù)。 

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

小結

我們使用權值w從記憶中檢索信息。w包括這些因素:當前輸入,以前的交點,可能的變換與模糊。這里是系統(tǒng)框圖,其中控制器輸出必要的參數(shù),這些參數(shù)用于在不同的階段計算w。 

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法


博客原址 https://medium.com/@jonathan_hui/neural-turing-machines-a-fundamental-approach-to-access-memory-in-deep-learning-b823a31fe91d

更多文章,關注雷鋒網(wǎng),添加雷鋒字幕組微信號(leiphonefansub)為好友

備注「我要加入」,To be an  AI  Volunteer !

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

雷鋒網(wǎng)雷鋒網(wǎng)


雷峰網(wǎng)原創(chuàng)文章,未經(jīng)授權禁止轉載。詳情見轉載須知。

神經(jīng)網(wǎng)絡圖靈機:深度學習中與內存進行交互的基本方法

分享:
相關文章

知情人士

AI研習社(yanxishe.com)譯站頻道,傳播前沿人工智能知識,讓語言不再成為學習知識的門檻。(原雷鋒字幕組)
當月熱門文章
最新文章
請?zhí)顚懮暾埲速Y料
姓名
電話
郵箱
微信號
作品鏈接
個人簡介
為了您的賬戶安全,請驗證郵箱
您的郵箱還未驗證,完成可獲20積分喲!
請驗證您的郵箱
立即驗證
完善賬號信息
您的賬號已經(jīng)綁定,現(xiàn)在您可以設置密碼以方便用郵箱登錄
立即設置 以后再說