0
雷鋒網(wǎng)按:本文作者郭璞,原文載于作者個人博客,雷鋒網(wǎng)已獲授權(quán)。
下午的時候,配好了OpenCV的Python環(huán)境,OpenCV的Python環(huán)境搭建。于是迫不及待的想體驗一下opencv的人臉識別,如下文。
Haar-like
Haar-like百科釋義。通俗的來講,就是作為人臉特征即可。
Haar特征值反映了圖像的灰度變化情況。例如:臉部的一些特征能由矩形特征簡單的描述,如:眼睛要比臉頰顏色要深,鼻梁兩側(cè)比鼻梁顏色要深,嘴巴比周圍顏色要深等。
opencv api
要想使用opencv,就必須先知道其能干什么,怎么做。于是API的重要性便體現(xiàn)出來了。就本例而言,使用到的函數(shù)很少,也就普通的讀取圖片,灰度轉(zhuǎn)換,顯示圖像,簡單的編輯圖像罷了。
如下:
讀取圖片
只需要給出待操作的圖片的路徑即可。
import cv2
image = cv2.imread(imagepath)
灰度轉(zhuǎn)換
灰度轉(zhuǎn)換的作用就是:轉(zhuǎn)換成灰度的圖片的計算強度得以降低。
import cv2
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
畫圖
opencv 的強大之處的一個體現(xiàn)就是其可以對圖片進行任意編輯,處理。
下面的這個函數(shù)最后一個參數(shù)指定的就是畫筆的大小。
import cv2
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
顯示圖像
編輯完的圖像要么直接的被顯示出來,要么就保存到物理的存儲介質(zhì)。
import cv2
cv2.imshow("Image Title",image)
獲取人臉識別訓(xùn)練數(shù)據(jù)
看似復(fù)雜,其實就是對于人臉特征的一些描述,這樣opencv在讀取完數(shù)據(jù)后很據(jù)訓(xùn)練中的樣品數(shù)據(jù),就可以感知讀取到的圖片上的特征,進而對圖片進行人臉識別。
import cv2
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
里賣弄的這個xml文件,就是opencv在GitHub上共享出來的具有普適的訓(xùn)練好的數(shù)據(jù)。我們可以直接的拿來使用。
訓(xùn)練數(shù)據(jù)參考地址:
https://github.com/opencv/opencv/tree/master/data/haarcascades
探測人臉
說白了,就是根據(jù)訓(xùn)練的數(shù)據(jù)來對新圖片進行識別的過程。
import cv2
# 探測圖片中的人臉
faces = face_cascade.detectMultiScale(
gray,
scaleFactor = 1.15,
minNeighbors = 5,
minSize = (5,5),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)
我們可以隨意的指定里面參數(shù)的值,來達到不同精度下的識別。返回值就是opencv對圖片的探測結(jié)果的體現(xiàn)。
處理人臉探測的結(jié)果
結(jié)束了剛才的人臉探測,我們就可以拿到返回值來做進一步的處理了。但這也不是說會多么的復(fù)雜,無非添加點特征值罷了。
import cv2
print "發(fā)現(xiàn){0}個人臉!".format(len(faces))
for(x,y,w,h) in faces:
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
有了剛才的基礎(chǔ),我們就可以完成一個簡單的人臉識別的小例子了。
圖片素材
下面的這張圖片將作為我們的檢測依據(jù)。
人臉檢測代碼
# coding:utf-8
import sys
reload(sys)
sys.setdefaultencoding('utf8')
# __author__ = '郭 璞'
# __date__ = '2016/9/5'
# __Desc__ = 人臉檢測小例子,以圓圈圈出人臉
import cv2
# 待檢測的圖片路徑
imagepath = r'./heat.jpg'
# 獲取訓(xùn)練好的人臉的參數(shù)數(shù)據(jù),這里直接從GitHub上使用默認值
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
# 讀取圖片
image = cv2.imread(imagepath)
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
# 探測圖片中的人臉
faces = face_cascade.detectMultiScale(
gray,
scaleFactor = 1.15,
minNeighbors = 5,
minSize = (5,5),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)
print "發(fā)現(xiàn){0}個人臉!".format(len(faces))
for(x,y,w,h) in faces:
# cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
cv2.circle(image,((x+x+w)/2,(y+y+h)/2),w/2,(0,255,0),2)
cv2.imshow("Find Faces!",image)
cv2.waitKey(0)
人臉檢測結(jié)果
輸出圖片:
輸出結(jié)果:
D:\Software\Python2\python.exe E:/Code/Python/DataStructor/opencv/Demo.py
發(fā)現(xiàn)3個人臉!
詳情見:案例參考
回顧一下,這次的實驗就是簡單的對opencv的常用的api的使用,重點在于訓(xùn)練數(shù)據(jù)的使用和人臉探測的處理。
從初級到高級,理論 + 實戰(zhàn),一站式深度了解 TensorFlow!
本課程面向深度學(xué)習(xí)開發(fā)者,講授如何利用 TensorFlow 解決圖像識別、文本分析等具體問題。課程跨度為 10 周,將從 TensorFlow 的原理與基礎(chǔ)實戰(zhàn)技巧開始,一步步教授學(xué)員如何在 TensorFlow 上搭建 CNN、自編碼、RNN、GAN 等模型,并最終掌握一整套基于 TensorFlow 做深度學(xué)習(xí)開發(fā)的專業(yè)技能。
兩名授課老師佟達、白發(fā)川身為 ThoughtWorks 的資深技術(shù)專家,具有豐富的大數(shù)據(jù)平臺搭建、深度學(xué)習(xí)系統(tǒng)開發(fā)項目經(jīng)驗。
時間:每周二、四晚 20:00-21:00
開課時長:總學(xué)時 20 小時,分 10 周完成,每周 2 次,每次 1 小時
線上授課地址:http://www.mooc.ai/
雷鋒網(wǎng)相關(guān)閱讀:
繼LFW之后,騰訊優(yōu)圖又在難度更大的人臉識別庫MegaFace中獲得全球第一
33歲男子如何發(fā)現(xiàn)自己被拐真相?除了川式烤魚,還有人臉識別技術(shù)
雷峰網(wǎng)版權(quán)文章,未經(jīng)授權(quán)禁止轉(zhuǎn)載。詳情見轉(zhuǎn)載須知。