丁香五月天婷婷久久婷婷色综合91|国产传媒自偷自拍|久久影院亚洲精品|国产欧美VA天堂国产美女自慰视屏|免费黄色av网站|婷婷丁香五月激情四射|日韩AV一区二区中文字幕在线观看|亚洲欧美日本性爱|日日噜噜噜夜夜噜噜噜|中文Av日韩一区二区

您正在使用IE低版瀏覽器,為了您的雷峰網(wǎng)賬號安全和更好的產(chǎn)品體驗,強烈建議使用更快更安全的瀏覽器
此為臨時鏈接,僅用于文章預覽,將在時失效
人工智能 正文
發(fā)私信給老王
發(fā)送

0

NIPS 2016精華大盤點丨吳恩達、LeCun等大師的論文、PPT都在這兒,別勞心去找了

本文作者: 老王 2016-12-08 10:19
導語:Yann LeCun、吳恩達、Ian Goodfellow 等一大波牛人的 PPT 和論文來襲。

2016 NIPS 仍在如火如荼地進行,各位大佬也頻繁在會場露面,并時不時的搞個“大新聞”。雷鋒網(wǎng)時刻關注著 NIPS 的一切動態(tài),并把大家較為關注的論文以及學術大師的PPT整理出來,方便大家學習和參考。

先打個招呼,正文和文末都有彩蛋。

Yann LeCun 

NIPS 2016精華大盤點丨吳恩達、LeCun等大師的論文、PPT都在這兒,別勞心去找了

Yann LeCun 最近可謂是學術界的網(wǎng)紅,上周先后錄了三段視頻為大家普及人工智能知識,現(xiàn)在又飛到西班牙見見粉絲,也不忘隨時更新下 Facebook。

Yann LeCun 受邀在今年的 NIPS 大會發(fā)表演講。眾所周知,深度學習通常分類為:無監(jiān)督學習、監(jiān)督學習和增強學習,而 Yann LeCun 在演講中用“預測學習”替代“無監(jiān)督學習”。他指出因為預測學習要求機器不僅能在沒有人類監(jiān)督的情況下進行學習,同時能夠?qū)W習世界的預測模型。

演講結束后 ,Yann LeCun 做了個總結:

1.  如果有很多標簽的數(shù)據(jù),監(jiān)督學習會運行的很好。

2. 但是如果我們想讓機器觀察世界并如何獲取"常識",上面提到的那一點是遠遠不夠的。

3. 唯一能讓機器獲得常識的方法就是讓它像人和動物一樣觀察世界。

4. 要變得更聰明,機器需要學習世界的預測模型。

5. 實體RNN是一種新模型,從對事件的文本描述中,對世界的狀態(tài)作出估測。

6. 這是唯一一個能解決20個任務,并且精確度還不錯地模型。

7. 通過演示(完成)動作序列進行學習,并在不影響真實世界的情況下模擬出結果。

8. 但他們也需要一個目標導向的學習方式,同時也需要基于模型的增強學習.

9. 預測學習可以在一個以能源為基礎的框架內(nèi)制定,在不確定的情況下開始學習。

10. 在不確定的情況下學習,最有效的辦法是對抗訓練。

11. 以能源為基礎的生成式對抗網(wǎng)絡可以合成高分辨率圖像。

12. 對抗訓練能夠訓練視頻預測系統(tǒng),并將"模糊預測"的問題列入最小二乘法問題。

看到這里,你一定想仔細瞅瞅 Yann LeCun 的 75 頁 PPT 吧?

關注雷鋒網(wǎng)旗下的人工智能垂直微信公眾號【AI科技評論】,在公眾號后臺回復關鍵詞“大師”,獲取PPT。

Yoshua Bengio 得意門生:Ian Goodfellow

NIPS 2016精華大盤點丨吳恩達、LeCun等大師的論文、PPT都在這兒,別勞心去找了

近日,Open AI 科學家 Ian Goodfellow 在 NIPS 2016 大會上分享了生成式對抗網(wǎng)絡的研究成果,

Ian Goodfellow  是何許人也,現(xiàn)為 Open AI 科學家,此前為谷歌大腦團隊高級研究員,大學期間師從 Yoshua Bengio 大神。生成式對抗網(wǎng)絡這個詞就是他發(fā)明的,而且對機器學習領域的研究影響重大。

那么就來聽聽“生成式對抗網(wǎng)絡之父”講講生成式對抗網(wǎng)絡。

送個菜單,這是 Yoshua Bengio 剛剛在 FB 上發(fā)的照片,師徒相聚,畫面感人。

NIPS 2016精華大盤點丨吳恩達、LeCun等大師的論文、PPT都在這兒,別勞心去找了

NIPS大會現(xiàn)場:最左為 Yoshua Bengio,最右為 Ian Goodfellow 

那么接下來言歸正傳:

我們知道,機器學習方法可以分為生成方法(generative approach)和判別方法(discriminative approach),所學到的模型分別稱為生成式模型(generative model)和判別式模型(discriminative model)。其中近兩年來流行的生成式模型主要分為三種方法:

  • 生成對抗網(wǎng)絡(GAN:Generative Adversarial Networks) 

  • 變分自編碼器(VAE: Variational Autoencoders) 

  • 自回歸模型(Autoregressive models) 

小編為大家提供的 PPT 內(nèi)容著重講生成對抗網(wǎng)絡(GAN:Generative Adversarial Networks),總共 86 頁。 

關注微信公眾賬號【AI科技評論】,在微信公眾號后臺回復關鍵詞“大神”,獲取PPT。

吳恩達

昨日在吳恩達教授在 NIPS 上發(fā)表演講:《利用深度學習開發(fā)人工智能應用的基本要點(Nuts and Bolts of Building Applications using Deep Learning)》。

吳恩達在現(xiàn)場用黑筆白筆寫的板書,已被小編做成了中文版 PPT,就是這么走心。

NIPS 2016精華大盤點丨吳恩達、LeCun等大師的論文、PPT都在這兒,別勞心去找了

整理后的:

NIPS 2016精華大盤點丨吳恩達、LeCun等大師的論文、PPT都在這兒,別勞心去找了

關注微信公眾賬號【AI科技評論】,在微信公眾號后臺回復關鍵詞“吳恩達大禮包”,獲取PPT。

2016NIPS 有趣、有料的論文視頻 8 個

NIPS 2016精華大盤點丨吳恩達、LeCun等大師的論文、PPT都在這兒,別勞心去找了

本文作者魏秀參,雷鋒網(wǎng)已獲得這部分內(nèi)容的引用授權。

前幾天 NIPS官網(wǎng)開放了部分錄用文章的 Spotlight Videos(鏈接:https://nips.cc/Conferences/2016/SpotlightVideos),為學術達人魏秀參童鞋把所有論文都捋了一遍,特地將一些有趣、有料的內(nèi)容整理出來分享給大家。文章鏈接均為 Youtube 視頻。

一、Fast and Provably Good Seedings for k-Means:傳統(tǒng)k-Means算法受初始化影響較大,雖然后來有k-Means++算法來優(yōu)化初始化結果,但該算法不能適用于海量數(shù)據(jù)。本文提出了一種新的更優(yōu)且高效的針對k-Means初始化方法(oral paper)

鏈接:https://www.youtube.com/watch?v=QtQyeka-tlQ&feature=youtu.be

二、Hierarchical Question-Image Co-Attention for Visual Question Answering:針對VQA提出不僅要在image domain需要attention,同時為了增加魯棒性還需在question domain同樣加入attention;

鏈接:https://www.youtube.com/watch?v=m6t9IFdk0ms&feature=youtu.be

三、Residual Networks Behave Like Ensembles of Relatively Shallow Networks:實驗角度探究了ResNet,提出ResNet更像很多小網(wǎng)絡的集成。比較有意思的paper;

鏈接:https://www.youtube.com/watch?v=jFJF5hXuo0s

四、Stochastic Multiple Choice Learning for Training Diverse Deep Ensembles:多個深度模型集成算法;

鏈接:www.youtube.com/watch%3Fv%3DKjUfMtZjyfg%26feature%3Dyoutu.be

五、Active Learning from Imperfect Labelers:提出一種adaptive算法以處理主動學習中l(wèi)abeler不不確定的情況;

鏈接:https://www.youtube.com/watch?v=zslooZuNNIk&feature=youtu.be

六、Improved dropout for shallow deep learning:提出一種改進版本dropout 

鏈接:https://www.youtube.com/watch?v=oZOOfaT94iU&feature=youtu.be

七、Convolutional Neural Fabrics:抽象化CNN,學習網(wǎng)絡結構 

鏈接:https://www.youtube.com/watch?v=bqPJFQEykbQ

八、Tagger: Deep Unsupervised Perceptual Grouping很有料的文章,另外視頻很贊,建議授予“最佳視頻獎”:) 

鏈接:https://www.youtube.com/watch?v=jfB_lWZA4Qo&feature=youtu.be

Google 12 篇精選論文

獲取方式:關注微信公眾賬號【AI科技評論】,在后臺回復關鍵詞“谷歌大禮包”獲取 12 篇論文的 PDF

看完 PPT 和視頻,現(xiàn)在就得來點兒略生澀的硬貨了,Google 的重量級論文來襲,其中也有論文是 Geoffrey Hinton 寫的哦。

  • Community Detection on Evolving Graphs

作者:Stefano Leonardi, Aris Anagnostopoulos, Jakub ??cki, Silvio Lattanzi, Mohammad Mahdian

  • Linear Relaxations for Finding Diverse Elements in Metric Spaces

作者:Aditya Bhaskara, Mehrdad Ghadiri, Vahab Mirrokni, Ola Svensson

  • Nearly Isometric Embedding by Relaxation

作者:James McQueen, Marina Meila, Dominique Joncas

  • Optimistic Bandit Convex Optimization

作者:Mehryar Mohri, Scott Yang

  • Reward Augmented Maximum Likelihood for Neural Structured Prediction

作者:Mohammad Norouzi, Samy Bengio, Zhifeng Chen, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans

  • Stochastic Gradient MCMC with Stale Gradients

作者:Changyou Chen, Nan Ding, Chunyuan Li, Yizhe Zhang, Lawrence Carin

  • Unsupervised Learning for Physical Interaction through Video Prediction

作者:Chelsea Finn*, Ian Goodfellow, Sergey Levine

  • Using Fast Weights to Attend to the Recent Past

作者:Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Leibo, Catalin Ionescu

  • A Credit Assignment Compiler for Joint Prediction

作者:Kai-Wei Chang, He He, Stephane Ross, Hal III

  • A Neural Transducer

作者:Navdeep Jaitly, Quoc Le, Oriol Vinyals, Ilya Sutskever, David Sussillo, Samy Bengio

  • Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

作者:S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray Kavukcuoglu, Geoffrey Hinton

  • Bi-Objective Online Matching and Submodular Allocations

作者:Hossein Esfandiari, Nitish Korula, Vahab Mirrokni

DeepMind 論文精選

獲取方式:關注微信公眾賬號【AI科技評論】,在微信公眾號后臺回復關鍵詞“DeepMind大禮包”,獲取下面部分論文PDF

Google 的論文要是沒看夠的話,那就繼續(xù)瞅瞅 DeepMind 的論文。

DeepMind 在其博客上更新了文章《DeepMind Papers @ NIPS 》,介紹了其在 NIPS 2016 上發(fā)表的一部分論文。

一、用于學習物體、關系和物理學的交互網(wǎng)絡( Interaction Networks for Learning about Objects, Relations and Physics)

作者:Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu

論文鏈接: https://arxiv.org/abs/1605.07571

概述:在此介紹交互網(wǎng)絡(interaction networks),交互網(wǎng)絡可以推理復雜系統(tǒng)中物體的交互,支持動態(tài)預測,以及推理該系統(tǒng)的抽象屬性。交互網(wǎng)絡結合了三種強大的方法:結構化模型(structured model)、模擬(simulation)和深度學習。它們能夠輸入圖結構化的數(shù)據(jù)(graph-structured data),以一種類似于模擬的方式執(zhí)行以物體或關系為中心的推理,并可通過使用深度神經(jīng)網(wǎng)絡來實現(xiàn)。它們不會根據(jù)這些實體和關系的排列而改變,可自動泛化到與它們訓練時的結構不同和大小規(guī)模的系統(tǒng)中。

二、用于學習宏動作的 STRAW 模型(Strategic Attentive Writer for Learning Macro-Actions)

作者:Alexander (Sasha) Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John Agapiou, Koray Kavukcuoglu

論文視頻: https://www.youtube.com/watch?v=niMOdSu3yio

摘要:我們提出一個新的深度循環(huán)神經(jīng)網(wǎng)絡架構,它可以在一個強化學習場景中,通過與某個環(huán)境互動來以端到端的方式學習構建隱含的規(guī)劃。該網(wǎng)絡構建了一個內(nèi)部規(guī)劃,它會根據(jù)對來自環(huán)境中的下一個輸入的觀察進行持續(xù)地更新。此外,它也可以通過學習根據(jù)規(guī)劃實現(xiàn)所要的時長來將這個內(nèi)部表征分區(qū)成連續(xù)的子序列,不需要重新做計劃。

三、 用于 One Shot 學習的 Matching Network (Matching Networks for One Shot Learning)

作者:Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra

鏈接:https://arxiv.org/abs/1606.04080

摘要:給定一個樣本很少甚至只有一個樣本的看不見分類中,可以使用 Matching Networks 在 ImageNet 上達到較高的分類精度。該核心架構訓練起來較為簡單,與此同時,它在一系列圖像和文本分類任務上的表現(xiàn)極好。Matching Network 可按照其測試的方式訓練:呈現(xiàn)一系列瞬時性的 one shot 學習訓練任務,其中訓練樣本的每一個實例都要并行投入該網(wǎng)絡中。然后訓練 Matching Network 來正確對很多不同輸入訓練集進行分類。效果是要訓練一個網(wǎng)絡,它可以跳過梯度下降的步驟,在一個全新的數(shù)據(jù)集上分類。

四、安全有效的離策略強化學習(Safe and efficient off-policy reinforcement learning)

作者:Remi Munos, Tom Stepleton, Anna Harutyunyan, Marc G. Bellemare

論文鏈接:https://arxiv.org/abs/1606.02647

我們的目標是設計出帶有兩個所需特性的強化學習算法。首先,要使用離策略數(shù)據(jù)(off-policy data),當我們使用記憶再現(xiàn)(memory replay,即觀察日志數(shù)據(jù))時它對探索很重要。其次,要使用多步驟返回(multi-steps returns)以便更快地傳遞反饋和避免近似/估計誤差(approximation/estimation errors)的積累。這兩個屬性在深度強化學習中是至關重要的。

五、 樣本高效的蒙特卡洛規(guī)劃(Blazing the trails before beating the path: Sample efficient Monte-Carlo planning)

作者:Jean-Bastien Grill (INRIA), Michal Valko (INRIA), Remi Munos

PDF鏈接:https://papers.nips.cc/paper/6253-blazing-the-trails-before-beating-the-path-sample-efficient-monte-carlo-planning.pdf

假如有一臺依照馬爾科夫決策過程(MDP)運轉(zhuǎn)的機器人,它有有限或無限次數(shù)的狀態(tài)-動作到下一個狀態(tài)的轉(zhuǎn)換。機器人需要在執(zhí)行任務前進行一系列規(guī)劃?,F(xiàn)在,為了進行計劃,機器人配備了一個生成模型來進行蒙特卡洛規(guī)劃。為了感知世界,機器人需要進行高效的規(guī)劃,也就是說要樣本高效(sample-efficient)——通過僅探索可使用的一個狀態(tài)子集來利用 MDP 的可能結構,這些探索遵循近最優(yōu)策略(near-optimal policies)。你需要保證樣本復雜性,這取決于接近最優(yōu)狀態(tài)數(shù)量的度量。你想要的是對問題的蒙特卡洛采樣(用于估計期望)的擴展,該采樣可以交替最大化(在動作上)和期望(在下一個狀態(tài)上)。你需要一個簡單的實現(xiàn)和足夠的計算效率。我們提出了 TrailBlazer 來解決此類需求。

六、通過 Bootstrapped DQN 的深度探索(Deep Exploration via Bootstrapped DQN)

作者:Ian Osband, Charles Blundell, Alex Pritzel and Benjamin Van Roy

論文鏈接: https://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn

強化學習領域出現(xiàn)了很多突破,不過這些算法中很多都需要大量數(shù)據(jù),之后才能學會做出好的決策。在許多真實環(huán)境中,我們無法獲得如此大量的數(shù)據(jù)。

這些算法學習如此之慢的原因之一是它們并沒有收集到用于學習該問題的正確數(shù)據(jù)。這些算法使用抖動(采取隨機動作)來探索他們的環(huán)境——這種方法比起在多個時間步驟上對信息策略進行優(yōu)先級排序的深度探索,效率指數(shù)級地更差。對于使用深度探索進行統(tǒng)計學上高效的強化學習已經(jīng)有很多文獻了,但問題是這些算法中沒有一個是可以通過深度學習解決的,而現(xiàn)在我們有了。

這篇論文的關鍵突破如下:提出了第一個結合了深度學習與深度探索的實用強化學習算法:Bootstrapped DQN。

視頻連接:https://www.youtube.com/playlist?list=PLdy8eRAW78uLDPNo1jRv8jdTx7aup1ujM

七、 帶有隨機層數(shù)的序貫神經(jīng)模型(Sequential Neural Models with Stochastic Layers)

作者:Marco Fraccaro, S?ren Kaae S?nderby, Ulrich Paquet, Ole Winther

論文鏈接:https://arxiv.org/abs/1605.07571

摘要:RNN 在捕獲數(shù)據(jù)中的長期依賴性方面表現(xiàn)優(yōu)異,而 SSM 可以對序列中的潛在隨機結構中的不確定性進行建模,并且善于跟蹤和控制。有沒有可能將這兩者的最好一面都集中到一起呢?在本論文中,我們將告訴你如何通過分層確定的(RNN)層和隨機的(SSM)層去實現(xiàn)這個目標。我們將展示如何通過給定一個序列的過去(過濾)、以及它的過去和未來(平滑)的信息來有效地推理它當前的隱含結構。

八、通過梯度下降去學習通過梯度下降的學習(Learning to learn by gradient descent by gradient descent)

作者:Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew Hoffman, David Pfau, Tom Schaul, Nando De Freitas

論文鏈接:https://arxiv.org/abs/1606.0447 (https://arxiv.org/abs/1606.04474)

摘要:我們展示了如何將優(yōu)化算法的設計作為一個學習問題,允許算法學習以一種自動的方式在相關問題中探索結構。我們學習到的算法在已經(jīng)被訓練過的任務上的表現(xiàn)勝過了標準的人工設計的算法,并且也可以很好地推廣到具有類似結構的新任務中。我們在一些任務上演示了這種方法,包括神經(jīng)網(wǎng)絡訓練和使用神經(jīng)藝術為圖像賦予風格。

九、一個使用部分調(diào)節(jié)的在線序列到序列的模型(An Online Sequence-to-Sequence Model Using Partial Conditioning)

作者:Navdeep Jaitly, Quoc V. Le, Oriol Vinyals, Ilya Sutskever, David Sussillo, Samy Bengio

PDF鏈接:http://papers.nips.cc/paper/6594-an-online-sequence-to-sequence-model-using-partial-conditioning.pdf

摘要:由于從一個序列到另一個序列(序列到序列(seq2seq))的映射的模型的通用性比較優(yōu)異,所以它們在過去兩年變得非常流行,在翻譯、字幕或者解析等一系列任務中達到了頂尖水準。這些模型的主要缺點是它們在開始產(chǎn)生結果輸出序列「y」之前需要讀取整個輸入序列「x」。在我們的論文中,我們通過允許模型在整個輸入序列被讀取之前發(fā)出輸出符號來規(guī)避這些限制。雖然這引入了一些獨立假設,但也在語音識別或機器翻譯等特定領域的在線決策中使得這些模型更加理想。

十、 通過時間的記憶有效的反向傳播(Memory-Efficient Backpropagation through time)

作者:Audrunas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, Alex Graves

PDF鏈接:https://papers.nips.cc/paper/6220-memory-efficient-backpropagation-through-time.pdf

摘要:當訓練卷積 RNN 時,特別容易耗盡昂貴的 GPU 儲存器,并且儲存器的限制經(jīng)常導致網(wǎng)絡大小的折損。用于緩解這個方法的常見方案之一是僅記憶一些中間神經(jīng)元的激活,并且根據(jù)需要重新計算其他的激活。雖然存在許多的啟發(fā)式方法來折中儲存器和計算,但是它們中的大多數(shù)僅適用于某些邊緣情況并且是次優(yōu)的。我們將該問題視為一個動態(tài)規(guī)劃問題,它允許我們找到一類收到內(nèi)存限制的可證明最優(yōu)策略。對于長度為 1000 的序列,我們的算法節(jié)省了 95% 的儲存器使用,而每個學習步驟僅使用了比標準的 BPTT 多三分之一的時間。

十一、 實現(xiàn)概念壓縮(Towards Conceptual Compression)

作者:Karol Gregor, Frederic Besse, Danilo Rezende, Ivo Danihelka, Daan Wierstra

PDF連接:http://papers.nips.cc/paper/6542-towards-conceptual-compression.pdf

摘要:發(fā)現(xiàn)高層面的抽象表征是無監(jiān)督學習的主要目標之一。我們設計出一種架構解決這個問題,該架構可將存儲在像素中的信息轉(zhuǎn)換為攜帶表征的有序信息序列。訓練根據(jù)順序的緊急程度產(chǎn)生,其中早期表征攜帶了更多關于圖像的全局和概念方面的信息,而后期的表征則對應于細節(jié)。該模型是一個完全卷積、序列的變分自動編碼器,其設計靈感來自 DRAW。該架構簡單且均勻,因此不需要許多的設計選擇。

十二、圖像 3D 結構的無監(jiān)督學習(Unsupervised Learning of 3D Structure from Images)

作者: Danilo Rezende, Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, Nicolas Heess

論文地址:https://arxiv.org/abs/1607.00662

摘要:想象你正在盯著一張椅子的照片。如果從不同的視角想象椅子的形狀,你就能夠準確地識別出這是椅子。做到這一點的關鍵不僅是要明確了解透視圖、遮擋和圖像信息處理,更重要的是要有“椅子該是什么樣”這樣的先驗知識,這能讓你“填充”圖像中丟失的部分。在此論文中,我們研究了能夠完成類似上述推理的模型,首次證明了以完全無監(jiān)督的形式學習推論 3D 表征的可行性。

關注微信公眾賬號【AI科技評論】,在后臺回復“終極大禮包”獲取上面所有資料。

雷峰網(wǎng)原創(chuàng)文章,未經(jīng)授權禁止轉(zhuǎn)載。詳情見轉(zhuǎn)載須知

NIPS 2016精華大盤點丨吳恩達、LeCun等大師的論文、PPT都在這兒,別勞心去找了

分享:
相關文章

編輯

微信 wangyafeng123456
當月熱門文章
最新文章
請?zhí)顚懮暾埲速Y料
姓名
電話
郵箱
微信號
作品鏈接
個人簡介
為了您的賬戶安全,請驗證郵箱
您的郵箱還未驗證,完成可獲20積分喲!
請驗證您的郵箱
立即驗證
完善賬號信息
您的賬號已經(jīng)綁定,現(xiàn)在您可以設置密碼以方便用郵箱登錄
立即設置 以后再說