丁香五月天婷婷久久婷婷色综合91|国产传媒自偷自拍|久久影院亚洲精品|国产欧美VA天堂国产美女自慰视屏|免费黄色av网站|婷婷丁香五月激情四射|日韩AV一区二区中文字幕在线观看|亚洲欧美日本性爱|日日噜噜噜夜夜噜噜噜|中文Av日韩一区二区

您正在使用IE低版瀏覽器,為了您的雷峰網(wǎng)賬號安全和更好的產(chǎn)品體驗,強烈建議使用更快更安全的瀏覽器
此為臨時鏈接,僅用于文章預(yù)覽,將在時失效
業(yè)界 正文
發(fā)私信給嘉嘉
發(fā)送

0

ECCV 2022 | 創(chuàng)新奇智提出通過單品示例進行基于原型的分類器學(xué)習(xí)方法

本文作者: 嘉嘉 2022-08-08 11:47
導(dǎo)語:日前,全球計算機視覺頂級會議ECCV(European Conference on Computer Vision)公布了2022年論文接收結(jié)果。創(chuàng)新奇智投稿論

日前,全球計算機視覺頂級會議ECCV(European Conference on Computer Vision)公布了2022年論文接收結(jié)果。創(chuàng)新奇智投稿論文 《Automatic Check-Out via Prototype-based Classifier Learning from Single-Product Exemplars》成功被ECCV 2022接收。

ECCV 是計算機視覺領(lǐng)域世界三大頂級會議(CVPR,ICCV,ECCV)之一,每兩年舉辦一次。ECCV 的論文投稿量近五年來持續(xù)增長,根據(jù)ECCV 官方網(wǎng)站數(shù)據(jù),2022年ECCV 收到有效投稿論文8170篇,評審?fù)ㄟ^接收1629篇,評審不通過拒稿6541篇,接收率不到20%,反映出AI視覺技術(shù)在工業(yè)界和學(xué)術(shù)界的創(chuàng)新熱情繼續(xù)高漲,但創(chuàng)新難度也在不斷加大。作為對比,2020年ECCV共收到有效投稿5025篇,接收論文1361篇,接收率為27%。2018年共有2439篇投稿,接收776篇,錄用率為31.8%。通過對比發(fā)現(xiàn),ECCV 2022論文接收投稿數(shù)直接拉滿,比2020年還要多大約3000多篇。而錄用的論文這次比ECCV 2020僅多出200多篇,很顯然,中稿率下降也是情理之中。除了我們熟知的CVPR、ICCV,ECCV(歐洲計算機視覺國際會議)也是計算機視覺三大國際頂級會議之一,每兩年舉辦一次。ECCV 2022 將在10月23日-27日的以色列特拉維夫(Tel-Aviv)舉行。和剛剛過去的CVPR同樣,這個會議也將采取線下和線上混合形式召開。

ECCV 2022 | 創(chuàng)新奇智提出通過單品示例進行基于原型的分類器學(xué)習(xí)方法

論文解讀:

ECCV 2022 | 創(chuàng)新奇智提出通過單品示例進行基于原型的分類器學(xué)習(xí)方法 圖1:論文概要

 

論文概述:

l 本論文中提出的基于原型的分類器學(xué)習(xí)方法結(jié)合了目標檢測框架,適用于智能物品集合視覺檢出識別場景。

l 該方法可以減少實際應(yīng)用場景中對人工的依賴,加快物品集合檢出識別流程,并且能夠提高視覺檢出識別準確率。

l 由于物品集合單品示例與檢出識別圖像間存在領(lǐng)域差距,單品示例中只有單個物品集合,而檢出識別圖像中是多個多類物品集合的任意組合,這是物品集合視覺檢出識別任務(wù)的一個主要挑戰(zhàn)。

l 本文提出的通過物品集合單品示例進行基于原型的分類器學(xué)習(xí)方法,在目前規(guī)模最大的物品集合視覺檢出識別數(shù)據(jù)集上的結(jié)果明顯優(yōu)于現(xiàn)有先進方法。

創(chuàng)新背景:

物品集合視覺檢出識別任務(wù)旨在對物品進行精確的檢出與識別,包括識別每一類物品是否存在及其數(shù)量。該任務(wù)的一個主要挑戰(zhàn)是訓(xùn)練數(shù)據(jù)(單品示例)與測試數(shù)據(jù)(檢出識別圖像)間存在的巨大領(lǐng)域差距。

為了縮小這種差距,本文提出了通過單品示例進行基于原型的分類器學(xué)習(xí)方法。通過揭示表征類別語義的優(yōu)勢,首先從單品示例中獲取每個物品集合類別的原型表示。在原型的基礎(chǔ)上,生成包含背景類別的分類器,不僅可以識別細粒度的物品類別,還可以區(qū)分來自檢出識別圖像的背景候選框。此外,本文還通過對物品候選框分類置信度分數(shù)的鑒別性重排和全局層面的多標簽損失,來提升模型性能。

主要貢獻:

1. 提出了基于原型的分類器學(xué)習(xí)方法,用于處理物品集合視覺檢出識別任務(wù),特別是緩解領(lǐng)域差距問題。

2. 設(shè)計了一個鑒別性的物品候選框分類置信度分數(shù)重排方法,從而增強基于原型的分類器的鑒別能力。

3. 基于目前最大規(guī)模的物品集合視覺檢出識別數(shù)據(jù)集進行實驗,本文模型在整單物品集合的檢出識別準確率上明顯優(yōu)于現(xiàn)有的解決方案。

ECCV 2022 | 創(chuàng)新奇智提出通過單品示例進行基于原型的分類器學(xué)習(xí)方法

這是一種針對物品集合視覺檢出識別的基于原型的分類器學(xué)習(xí)方法,結(jié)合了二階段目標檢測網(wǎng)絡(luò),包括以下步驟:

步驟1:由一個預(yù)訓(xùn)練的網(wǎng)絡(luò)提取單品示例的特征并得到各類以及背景類原型,通過一個基于原型的分類器生成器生成包含背景類的物品候選框分類器。

步驟2:物品集合的檢出識別圖像輸入二階段目標檢測網(wǎng)絡(luò),由區(qū)域候選網(wǎng)絡(luò)生成物品候選框,使用步驟1生成的物品候選框分類器對這些物品候選框進行分類。

步驟3:根據(jù)步驟2得到物品候選框分類置信度分數(shù),對此進行基于背景類別的鑒別性重排,有利于對細粒度類別分類,同時提高了分類器的鑒別能力;另外,使用多實例損失對檢出識別圖像中各類物品的共現(xiàn)關(guān)系進行建模。

本方法與現(xiàn)有技術(shù)相比,其顯著優(yōu)點為:

(1) 本文方法使用基于原型的分類器學(xué)習(xí)方法,對單品示例與檢出識別圖像間存在的領(lǐng)域差距進行了彌合,提供了一種不同于現(xiàn)有方法路徑。

(2) 本文提出了基于背景類別的鑒別性重排方法,針對語義相近的細粒度物品集合類別進行分類。

(3) 與現(xiàn)有方法相比,本文方法性能更佳且所需計算資源更少。

創(chuàng)新奇智CTO張發(fā)恩(本論文作者之一)指出:“創(chuàng)新奇智提出的通過單品示例進行基于原型的分類器學(xué)習(xí)方法,可以減少實際應(yīng)用場景中對人工的依賴,加快物品集合檢出識別流程,并且能夠提高視覺檢出識別準確率。由于物品集合單品示例與檢出識別圖像間存在領(lǐng)域差距,單品示例中只有單個物品集合,而檢出識別圖像中是多個多類物品集合的任意組合,這是物品集合視覺檢出識別任務(wù)的一個主要挑戰(zhàn)。本文提出的通過物品集合單品示例進行基于原型的分類器學(xué)習(xí)方法,在目前規(guī)模最大的物品集合視覺檢出識別數(shù)據(jù)集上的結(jié)果明顯優(yōu)于現(xiàn)有先進方法。”

 制造業(yè)的物品檢測需求量多而復(fù)雜。傳統(tǒng)的方式不僅耗時耗力,而且檢測準確率不高。創(chuàng)新奇智提出的通過單品示例實現(xiàn)對物品集合的檢測,非常適用于諸如汽車零部件、消費電子設(shè)備等有批量產(chǎn)品檢測需求的場景,不僅能夠加快檢測流程,而且能提升檢測準確率,為企業(yè)降本增效帶來直接助益。


雷峰網(wǎng)版權(quán)文章,未經(jīng)授權(quán)禁止轉(zhuǎn)載。詳情見轉(zhuǎn)載須知。

分享:
相關(guān)文章
當月熱門文章
最新文章
請?zhí)顚懮暾埲速Y料
姓名
電話
郵箱
微信號
作品鏈接
個人簡介
為了您的賬戶安全,請驗證郵箱
您的郵箱還未驗證,完成可獲20積分喲!
請驗證您的郵箱
立即驗證
完善賬號信息
您的賬號已經(jīng)綁定,現(xiàn)在您可以設(shè)置密碼以方便用郵箱登錄
立即設(shè)置 以后再說