丁香五月天婷婷久久婷婷色综合91|国产传媒自偷自拍|久久影院亚洲精品|国产欧美VA天堂国产美女自慰视屏|免费黄色av网站|婷婷丁香五月激情四射|日韩AV一区二区中文字幕在线观看|亚洲欧美日本性爱|日日噜噜噜夜夜噜噜噜|中文Av日韩一区二区

您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
此為臨時鏈接,僅用于文章預覽,將在時失效
人工智能 正文
發(fā)私信給這只萌萌
發(fā)送

0

谷歌推出有界負載的一致性哈希算法,解決服務器負載均衡問題

本文作者: 這只萌萌 編輯:郭奕欣 2017-04-05 16:49
導語:谷歌研究院最近在其博客中提出了一種有界負載的一致性哈希算法,解決服務器的負載均衡問題。

谷歌推出有界負載的一致性哈希算法,解決服務器負載均衡問題

studyinsweden

雷鋒網AI科技評論按:運行大型Web服務需要負載平衡,例如內容托管。通常做法是在多個服務器之間均勻分發(fā)客戶端,以免任何服務器超負荷運行。此外,谷歌的研究者們期望找到一種分發(fā)方式,使得在客戶端和服務器可以隨時增加或刪除的動態(tài)環(huán)境中,分發(fā)也不會隨時間波動產生太大變化。

谷歌與哥本哈根大學訪問研究員Mikkel Thorup合作,開發(fā)了一種新的高效分配算法來解決這個問題:即嚴格控制每個服務器的最大負載,并從理論和經驗上進行了研究。緊接著,谷歌研究院與云團隊合作,在Google Cloud Pub / Sub(一種可擴展的事件流媒體服務)中實現(xiàn)算法,并在保證一致性和穩(wěn)定性的同時,對負載分配(分配給服務器的最大負載)的均勻性進行了實質性改進。在2016年8月,谷歌紐約研究院的 Vahab Mirrokni、Mikkel Thorup 及Mikkel Thorup發(fā)表了論文“Consistent Hashing with Bounded Loads”,并在論文中描述了算法,并分享在ArXiv上,方便更廣泛的研究用途。

三個月后,Vimeo的Andrew Rodland告訴我們,他發(fā)現(xiàn)了這篇論文并在haproxy(一個廣泛使用的開源軟件)中實現(xiàn)此算法,將其用于Vimeo的負載平衡項目。結果非常驚人:這種算法幫助他們將緩存帶寬降低了近8倍,解決了擴大規(guī)模的一個瓶頸。他最近在一篇博客文章中詳細介紹了此應用。這證明了谷歌研究院的理論研究不僅能應用到實踐中,也兼具開源及有效的優(yōu)點。

以下為雷鋒網編譯的論文部分內容,未經許可不得轉載。

背景

盡管一致性哈希算法早以被應用到動態(tài)環(huán)境中的負載平衡問題上,但是普遍存在的一個基本問題是,在某些情況下,它們可能導致許多服務器上的負載平衡次優(yōu)化。

此外,客戶端和服務器可能會定期添加或刪除,但谷歌研究團隊不希望因此導致客戶端的大量移動。因此,動態(tài)分配算法不僅要始終確保適當?shù)呢撦d均衡,還要最小化每次變化后被移動的客戶端數(shù)量。此外,服務器容量的嚴格限制使得這種分配問題更具挑戰(zhàn)性,也就是, 每臺服務器都有一個最大負載容量限制,我們希望容量能接近于平均負載。

換句話說,我們希望同時實現(xiàn)分配的均勻性和一致性。有大量的文獻討論了簡單場景,即服務器集群是固定的,只有客戶端被更新。但在這篇文章中,谷歌研究團隊討論了完全動態(tài)的場景,即客戶端和服務器可以隨時被添加和刪除。

算法

谷歌研究團隊把每個客戶端想象成一個球,將服務器想象成進球箱,仔細研究進球的隨機過程。為了實現(xiàn)進球箱的均勻性,期望所有箱子的負載盡量接近平均負載(球的數(shù)量除以箱子數(shù)量)。對于參數(shù)ε,谷歌研究團隊將每個箱子的容量上下界設置為平均負載的上下(1 +ε)倍。這種容量范圍允許設計一個同時滿足一致性和均勻性的分配算法。

想象一下,在一個圓上覆蓋了給定范圍的數(shù)字。谷歌研究團隊對球和進球箱分別應用不同的哈希函數(shù),以獲得與該圓上的位置對應范圍內的數(shù)字。然后,我們開始以特定的順序(假設根據它們的ID)分配球,而不考慮它們的哈希值。然后每個球順時針移動,并分配到還有剩余容量的第一個箱子。

谷歌推出有界負載的一致性哈希算法,解決服務器負載均衡問題

想象一下有6個球和3個箱子,使用2個哈希函數(shù)來隨機循環(huán)地分配球進箱。設每個箱子的容量是2,然后按球的升序依次分配球(根據它們的ID),順時針移動,1號球進入箱子C,2號球進入箱子A,3號球和4號球進入箱子B,5號球進入箱子C,然后6號球順時針移動嘗試進入箱子B,然而箱子B容量已達限制(箱子容量為2,箱子B已經裝了3號球和4號球),所以6號球繼續(xù)順時針移動嘗試進入箱子C,但是箱子C也已達容量,最后6號球進入了箱子A。

系統(tǒng)有任何更新(球或箱增加/刪除)時,算法需要重新進行計算分配以保證均勻性。算法中巧妙的一點在于,確保小范圍的更新(少量球或箱增加/刪除)只引起細微的分配變化,以滿足一致性。 在論文中,谷歌研究團隊表明了增加和刪除一個球引起其他球O(1 /ε2)的移動。最重要的一點是負載上界與系統(tǒng)中的球或箱的數(shù)量相對獨立。 所以即使球或箱的數(shù)量加倍,負載的界限也不會改變。這一點增強了分配問題的可擴展性(即使擴大分配規(guī)模,也不影響一致性)。下圖模擬了球或箱有更新時,移動次數(shù)(再分配)隨更新的變化情況。

谷歌推出有界負載的一致性哈希算法,解決服務器負載均衡問題

紅色曲線顯示平均移動次數(shù),藍色線條表示不同ε值的方差。 虛線曲線是基于理論研究建議的負載上界(通過預測實際運動次數(shù)能較好地擬合)。除此之外,對于任意值ε,谷歌研究團隊知道每個箱子的負載上下界為平均負載的(1 +ε)倍。 下圖表示不同值ε( 0.1,0.3,0.9)對應的箱子的負載分布。

谷歌推出有界負載的一致性哈希算法,解決服務器負載均衡問題

不同ε值的負載分布。 負載分布幾乎均勻,覆蓋了從0到(1 +ε)倍的平均負載,還有許多箱子的負載等于(1 +ε)倍的平均負載

從圖中可以看出均勻性和一致性的一個折衷 - 較小的ε值增強了均勻性,降低了一致性;而較大的ε值增加了一致性而降低了均勻性。較低的ε值能確保許多箱子的負載等于(1 +ε)倍的平均負載,其余箱子的負載依次衰減。

提供內容托管服務可能會遇到差異很大的各種場景,在這種情況下,谷歌研究院提供的這種一致性哈希算法將是理想的解決方案,即使是面對最壞的情況。

作者們對于內部試驗的結果感到興奮,但更加高興的是,外界發(fā)現(xiàn)該算法很有效果且兼具開源特性,允許任何人使用此算法。

致謝:感謝Google Cloud Pub / Sub團隊的Alex Totok,Matt Gruskin,Sergey Kondratyev和Haakon Ringberg,以及Mikkel Thorup對本文的寶貴貢獻。

原文鏈接:https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html,雷鋒網編譯

雷峰網版權文章,未經授權禁止轉載。詳情見轉載須知

谷歌推出有界負載的一致性哈希算法,解決服務器負載均衡問題

分享:
相關文章
當月熱門文章
最新文章
請?zhí)顚懮暾埲速Y料
姓名
電話
郵箱
微信號
作品鏈接
個人簡介
為了您的賬戶安全,請驗證郵箱
您的郵箱還未驗證,完成可獲20積分喲!
請驗證您的郵箱
立即驗證
完善賬號信息
您的賬號已經綁定,現(xiàn)在您可以設置密碼以方便用郵箱登錄
立即設置 以后再說