0
本文作者: 汪思穎 | 2017-09-01 18:16 |
雷鋒網(wǎng) AI科技評(píng)論按:本文作者何之源,原文載于知乎專(zhuān)欄AI Insight,雷鋒網(wǎng)獲其授權(quán)發(fā)布。
CycleGAN是在今年三月底放在arxiv(地址:https://arxiv.org/abs/1703.10593)的一篇文章,文章名為Learning to Discover Cross-Domain Relations with Generative Adversarial Networks,同一時(shí)期還有兩篇非常類(lèi)似的DualGAN(地址:https://arxiv.org/abs/1704.02510)和DiscoGAN(地址:https://arxiv.org/abs/1703.05192),簡(jiǎn)單來(lái)說(shuō),它們的功能就是:自動(dòng)將某一類(lèi)圖片轉(zhuǎn)換成另外一類(lèi)圖片。
作者在論文中也舉了一些例子,比如將普通的馬和斑馬進(jìn)行互相轉(zhuǎn)換,將蘋(píng)果和橘子進(jìn)行互相轉(zhuǎn)換:
把照片轉(zhuǎn)換成油畫(huà)風(fēng)格:
將油畫(huà)中的場(chǎng)景還原成現(xiàn)實(shí)中的照片:
由于CycleGAN這個(gè)框架具有較強(qiáng)的通用性,因此一經(jīng)發(fā)表就吸引了大量注意,很快,腦洞大開(kāi)的網(wǎng)友想出了各種各樣神奇的應(yīng)用。
比如將貓變成狗:
讓圖片中的人露出笑容:
國(guó)外網(wǎng)友Jack Clark還搜集了巴比倫、耶路撒冷以及倫敦的古代地圖,利用CycleGAN將它們還原成了真實(shí)衛(wèi)星圖像:
還有人使用CycleGAN將人臉轉(zhuǎn)換成娃娃:
將男人變成女人:
把你自己變成一個(gè)“肌肉文身猛男”也是可以的:
如果說(shuō)這些應(yīng)用多少可以理解,那么下面的應(yīng)用就有點(diǎn)“匪夷所思”了:你可以想象將人和拉面做轉(zhuǎn)換嗎?日本網(wǎng)友加藤卓哉(Takuya Kato)就訓(xùn)練了這樣一個(gè)模型,它可以從拉面中生成人像,此外將人臉變成拉面的圖片。鑒于生成的結(jié)果比較鬼畜,如果有興趣的可以點(diǎn)擊這個(gè)鏈接(地址:https://junyanz.github.io/CycleGAN/images/faces_and_ramens.jpg)觀看生成結(jié)果。
此外,知乎上的 @達(dá)聞西 還用CycleGAN訓(xùn)練了可以脫掉女優(yōu)衣服的模型(可以參考提高駕駛技術(shù):用GAN去除(愛(ài)情)動(dòng)作片中的馬賽克和衣服),其腦洞之大,實(shí)在是讓人驚嘆了一番。
今天這篇文章主要分成三個(gè)部分:
CycleGAN的原理解析
CycleGAN與原始的GAN、DCGAN、pix2pix模型的對(duì)比
如何在TensorFlow中用CycleGAN訓(xùn)練模型
我們之前已經(jīng)說(shuō)過(guò),CycleGAN的原理可以概述為:將一類(lèi)圖片轉(zhuǎn)換成另一類(lèi)圖片。也就是說(shuō),現(xiàn)在有兩個(gè)樣本空間,X和Y,我們希望把X空間中的樣本轉(zhuǎn)換成Y空間中的樣本。
因此,實(shí)際的目標(biāo)就是學(xué)習(xí)從X到Y(jié)的映射。我們?cè)O(shè)這個(gè)映射為F。它就對(duì)應(yīng)著GAN中的生成器,F(xiàn)可以將X中的圖片x轉(zhuǎn)換為Y中的圖片F(xiàn)(x)。對(duì)于生成的圖片,我們還需要GAN中的判別器來(lái)判別它是否為真實(shí)圖片,由此構(gòu)成對(duì)抗生成網(wǎng)絡(luò)。設(shè)這個(gè)判別器為 。這樣的話,根據(jù)這里的生成器和判別器,我們就可以構(gòu)造一個(gè)GAN損失,表達(dá)式為:
這個(gè)損失實(shí)際上和原始的GAN損失是一模一樣的,如果這一步不是很理解的可以參考我之前的一篇專(zhuān)欄:GAN學(xué)習(xí)指南:從原理入門(mén)到制作生成Demo。
但單純的使用這一個(gè)損失是無(wú)法進(jìn)行訓(xùn)練的。原因在于,映射F完全可以將所有x都映射為Y空間中的同一張圖片,使損失無(wú)效化。對(duì)此,作者又提出了所謂的“循環(huán)一致性損失”(cycle consistency loss)。
我們?cè)偌僭O(shè)一個(gè)映射G,它可以將Y空間中的圖片y轉(zhuǎn)換為X中的圖片G(y)。CycleGAN同時(shí)學(xué)習(xí)F和G兩個(gè)映射,并要求 ,以及
。也就是說(shuō),將X的圖片轉(zhuǎn)換到Y(jié)空間后,應(yīng)該還可以轉(zhuǎn)換回來(lái)。這樣就杜絕模型把所有X的圖片都轉(zhuǎn)換為Y空間中的同一張圖片了。根據(jù)
和
,循環(huán)一致性損失就定義為:
同時(shí),我們?yōu)镚也引入一個(gè)判別器 ,由此可以同樣定義一個(gè)GAN的損失
,最終的損失就由三部分組成:
為了進(jìn)一步搞清楚CycleGAN的原理,我們可以拿它和其他幾個(gè)GAN模型,如DCGAN、pix2pix模型進(jìn)行對(duì)比。
先來(lái)看下DCGAN,它的整體框架和最原始的那篇GAN是一模一樣的,在這個(gè)框架下,輸入是一個(gè)噪聲z,輸出是一張圖片(如下圖),因此,我們實(shí)際只能隨機(jī)生成圖片,沒(méi)有辦法控制輸出圖片的樣子,更不用說(shuō)像CycleGAN一樣做圖片變換了。
pix2pix也可以做圖像變換,它和CycleGAN的區(qū)別在于,pix2pix模型必須要求成對(duì)數(shù)據(jù)(paired data),而CycleGAN利用非成對(duì)數(shù)據(jù)也能進(jìn)行訓(xùn)練(unpaired data)。
比如,我們希望訓(xùn)練一個(gè)將白天的照片轉(zhuǎn)換為夜晚的模型。如果使用pix2pix模型,那么我們必須在搜集大量地點(diǎn)在白天和夜晚的兩張對(duì)應(yīng)圖片,而使用CycleGAN只需同時(shí)搜集白天的圖片和夜晚的圖片,不必滿足對(duì)應(yīng)關(guān)系。因此CycleGAN的用途要比pix2pix更廣泛,利用CycleGAN就可以做出更多有趣的應(yīng)用。
最后來(lái)講一講如何在TensorFlow中實(shí)驗(yàn)CycleGAN,打開(kāi)全球最大的同性交友網(wǎng)站Github,我們可以發(fā)現(xiàn)CycleGAN在TensorFlow中已經(jīng)有很多輪子了,我使用的代碼是:vanhuyz/CycleGAN-TensorFlow(地址:https://github.com/vanhuyz/CycleGAN-TensorFlow)。
利用這個(gè)代碼,我訓(xùn)練了一個(gè)從男性和女性圖片互換的模型,比如將男人轉(zhuǎn)換成女人(左側(cè)為原圖,右側(cè)為模型自動(dòng)生成的圖片):
還可以將女性轉(zhuǎn)換成男性:
為了訓(xùn)練這么一個(gè)模型,我們需要分別準(zhǔn)備好男性的圖片和女性的圖片。在實(shí)踐中,我使用了CelebA數(shù)據(jù)集,分別取出其中男性和女性的圖片并統(tǒng)一縮放到256x256的大小,然后存入兩個(gè)文件夾中:
如果你對(duì)這個(gè)實(shí)驗(yàn)有興趣,可以直接在地址https://pan.baidu.com/s/1i5qY3yt下載到我使用的數(shù)據(jù)集。當(dāng)然,也可以使用自己的數(shù)據(jù),只需要將它們存為jpg格式并統(tǒng)一縮放到256x256的大小就可以了。接下來(lái)的步驟為:
1. 下載項(xiàng)目代碼
git clone https://github.com/vanhuyz/CycleGAN-TensorFlow.git
2. 將圖片轉(zhuǎn)換成tfrecords格式
這個(gè)項(xiàng)目中提供了一個(gè)build_data腳本,用于將圖片轉(zhuǎn)換成tfrecords形式。假設(shè)我們的圖片存放在~/datasets/man2woman/a_resized/和 ~/datasets/man2woman/b_resized目錄下,對(duì)應(yīng)的命令就是:
python build_data.py \
--X_input_dir ~/datasets/man2woman/a_resized/ \
--Y_input_dir ~/datasets/man2woman/b_resized/ \
--X_output_file ~/datasets/man2woman/man.tfrecords \
--Y_output_file ~/datasets/man2woman/woman.tfrecords
3. 訓(xùn)練
訓(xùn)練的命令為:
python train.py \
--X ~/datasets/man2woman/man.tfrecords \
--Y ~/datasets/man2woman/woman.tfrecords \
--image_size 256
訓(xùn)練的過(guò)程比較漫長(zhǎng),此時(shí)可以打開(kāi)TensorBoard來(lái)觀察訓(xùn)練情況(運(yùn)行這個(gè)命令時(shí)需要將“20170715-1622”改成機(jī)器中對(duì)應(yīng)的文件夾,下同):
tensorboard --logdir checkpoints/20170715-1622
4. 導(dǎo)出模型并執(zhí)行單張圖片
導(dǎo)出模型的方法為:
python export_graph.py \
--checkpoint_dir checkpoints/20170715-1622 \
--XtoY_model man2woman.pb \
--YtoX_model woman2man.pb \
--image_size 256
對(duì)單張圖片進(jìn)行轉(zhuǎn)換(將data/test.jpg替換為對(duì)應(yīng)的輸入圖片地址):
python inference.py \
--model pretrained/man2woman.pb \
--input data/test.jpg \
--output data/output.jpg \
--image_size 256
因?yàn)镃ycleGAN只需要兩類(lèi)圖片就可以訓(xùn)練出一個(gè)模型,所以它的應(yīng)用十分廣泛,個(gè)人感覺(jué)是近期最好玩的一個(gè)深度學(xué)習(xí)模型。這篇文章介紹了CycleGAN的一些有趣的應(yīng)用、Cycle的原理以及和其他模型的對(duì)比,最后加了一個(gè)TensorFlow中的CycleGAN小實(shí)驗(yàn),希望大家喜歡~
雷峰網(wǎng)版權(quán)文章,未經(jīng)授權(quán)禁止轉(zhuǎn)載。詳情見(jiàn)轉(zhuǎn)載須知。